×

An assessment of coupling algorithms for nuclear reactor core physics simulations. (English) Zbl 1349.82087

Summary: This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the \(k\)-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (\(k\)-eigenvalue) and critical boron search problems are considered.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
82D75 Nuclear reactor theory; neutron transport
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, X.; Cheng, X., Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly, Ann. Nucl. Energy, 36, 28-36 (2009)
[2] Monti, L.; Schulenberg, T., Coupled ERANOS/TRACE system for HPWLR 3 pass core analyses, (International Conference on Mathematics, Computational Methods & Reactor Physics. International Conference on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, NY (2009))
[3] Yan, J., Coupled computational fluid dynamics and MOC neutronic simulations of Westinghouse PWR fuel assemblies with grid spacers, (14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Toronto, ON (2011))
[4] Palmtag, S., Coupled single assembly solution with VERA (Problem 6) (2013), Consortium for Advanced Simulation of LWRs, Tech. rep. CASL-U-2013-0150-000
[5] Palmtag, S., Demonstration of neutronics coupled to thermal-hydraulics for a full-core problem using VERA (2013), Consortium for Advanced Simulation of LWRs, Tech. rep. CASL-U-2013-0196-000
[6] Kochunas, B.; Jabaay, D.; Collins, B.; Downar, T., Demonstration of neutronics coupled to thermal-hydraulics for a full-core problem using COBRA-TF/MPACT (2014), Consortium for Advanced Simulation of LWRs, Tech. rep. CASL-U-2014-0051-000
[7] Chauliac, C., NURESIM - a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis, Nucl. Eng. Des., 241, 9, 3416-3426 (2011)
[8] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics, vol. 16 (1995), SIAM: SIAM Philadelphia, PA · Zbl 0832.65046
[9] Knoll, D.; Keyes, D., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[10] Mahadevan, V. S., High resolution numerical methods for coupled non-linear multi-physics simulations with applications in reactor analysis (2010), Texas A&M University, Ph.D. thesis
[11] Knoll, J.; Park, H.; Newman, C., Acceleration of \(k\)-eigenvalue/criticality calculations using the Jacobian-free Newton-Krylov method, Nucl. Sci. Eng., 167, 2, 133-140 (2011)
[12] Gill, D.; Azmy, Y., Newton’s method for solving \(k\)-eigenvalue problems in neutron diffusion theory, Nucl. Sci. Eng., 167, 2, 141-153 (2011)
[13] Kastanya, D. Y.F.; Turinsky, P. J., Development and implementation of a Newton-BICGSTAB iterative solver in the FORMOSA-B BWR core simulator code, Nucl. Sci. Eng., 150, 56-71 (2005)
[14] Ragusa, J. C.; Mahadevan, V. S., Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis, Nucl. Eng. Des., 239, 3, 566-579 (2009)
[15] Park, H.; Knoll, D. A.; Gaston, D. R.; Martineau, R. C., Tightly coupled multiphysics algorithms for pebble bed reactors, Nucl. Sci. Eng., 166, 2, 118-133 (2010)
[16] Pounders, J. M.; Ingram, R., Natural equilibria in steady-state neutron diffusion with temperature feedback, (International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID (2013))
[17] Gaston, D. R., Physics-based multiscale coupling for full core nuclear reactor simulation, Ann. Nucl. Energy, 84, 45-54 (2015)
[18] Hansel, J. E.; Ragusa, J. C.; Allu, S.; Berrill, M. A.; Clarno, K. T., Analysis of physics-based preconditioning for single-phase subchannel equations, (International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C 2013 (2013))
[19] Chadwick, M.; Herman, M.; Oblozinsky, P.; Dunn, M.; Danon, Y.; Kahler, A.; Smith, D.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D.; Capote, R.; Carlson, A., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112, 12, 2887-2996 (2011)
[20] Lewis, E. E.; Miller, W. F., Computational Methods of Neutron Transport (1993), American Nuclear Society, Inc.: American Nuclear Society, Inc. La Grange Park, Illinois, USA · Zbl 0594.65096
[21] Rearden, B.; Lefebvre, R.; Lefebvre, J.; Clarno, K.; Williams, M.; Petrie, L.; Mertyurek, U., Modernization enhancements in SCALE 6.2, (PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future. PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan (2014))
[22] SCALE: a comprehensive modeling and simulation suite for nuclear safety analysis and design (2011), Oak Ridge National Laboratory: Oak Ridge National Laboratory Oak Ridge, TN, Tech. rep. ORNL/TM-2005/39, Version 6.1
[23] Vondy, D. R.; Fowler, T. B.; Cunningham VENTURE, G. W., A code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport (1977), Oak Ridge National Laboratory, Tech. rep. ORNL-5062/R1, Version II
[24] Dall’Osso, A., A neutron balance approach in critical parameter determination, Ann. Nucl. Energy, 35, 9, 1686-1694 (2008)
[25] Anderson, D. G., Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12, 547-560 (1965) · Zbl 0149.11503
[26] Fang, H.; Saad, Y., Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl., 16, 197-221 (2009) · Zbl 1224.65134
[27] Lott, P. A.; Walker, H. F.; Woodward, C. S.; Yang, U. M., An accelerated Picard method for nonlinear systems related to variably saturated flow, Adv. Water Resour., 38, 92-101 (2012)
[28] Calef, M. T.; Fichtl, E. D.; Warsa, J. S.; Berndt, M.; Carlson, N. N., Nonlinear Krylov acceleration applied to a discrete ordinates formulation of the \(k\)-eigenvalue problem, J. Comput. Phys., 238, 188-209 (2013) · Zbl 1286.65048
[29] Walker, H. F.; Ni, P., Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49, 4, 1715-1735 (2011) · Zbl 1254.65067
[30] Toth, A.; Kelley, C. T., Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal., 53, 2, 805-819 (2015) · Zbl 1312.65083
[31] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 2, 400-408 (1982) · Zbl 0478.65030
[32] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 11, 450-481 (1990) · Zbl 0708.65049
[33] Franceschini, F.; Godfrey, A.; Kulesza, J.; Oelrich, R., Westinghouse VERA test stand - zero power physics test simulations for the AP1000 PWR (2014), Consortium for Advanced Simulation of LWRs, Tech. rep. CASL-U-2014-0012-001
[34] Brown, P. N.; Woodward, C. S., Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer, SIAM J. Sci. Comput., 499-516 (2001) · Zbl 0992.65102
[35] Brown, P. N.; Walker, H. F.; Wasyk, R.; Woodward, C. S., On using approximate finite differences in matrix-free Newton-Krylov methods, SIAM J. Numer. Anal., 46, 4, 1892-1922 (2008) · Zbl 1183.65052
[36] Tonks, M.; Gaston, D.; Permann, C.; Millett, P.; Hansen, G.; Wolf, D., A coupling methodology for mesoscale-informed nuclear fuel performance codes, Nucl. Eng. Des., 240, 10, 2877-2883 (2010)
[37] Duderstadt, J. J.; Hamilton, L. J., Nuclear Reactor Analysis (1976), John Wiley & Sons
[38] Larsen, E. W.; Morel, J. E.; McGhee, J. M., Asymptotic derivation of the multigroup P1 and simplified PN equations with anisotropic scattering, Nucl. Sci. Eng., 123, 328-342 (1996)
[39] Brantley, P. S.; Larsen, E. W., The simplified P3 approximation, Nucl. Sci. Eng., 134, 1-21 (2000)
[40] Larsen, E. W.; Thömmes, G.; Klar, A.; Götz, T., Simplified PN approximations to the equations of radiative heat transfer and applications, J. Comput. Phys., 183, 2, 652-675 (2002) · Zbl 1016.65105
[41] Evans, T.; Stafford, A.; Slaybaugh, R.; Clarno, K., DENOVO: a new three-dimensional parallel discrete ordinates code in SCALE, Nucl. Technol., 171, 171-200 (2010)
[42] Clarno, K. T., The AMP (Advanced MultiPhysics) nuclear fuel performance code, Nucl. Eng. Des., 252, 1, 108-120 (2012)
[43] Philip, B.; Berrill, M. A.; Allu, S.; Hamilton, S. P.; Sampath, R. S.; Clarno, K. T.; Dilts, G., A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins, J. Comput. Phys., 286, 143-171 (2015) · Zbl 1351.80013
[44] Phillippe, A. M.; Clarno, K. T.; Banfield, J. E.; Ott, L. J.; Philip, B.; Berrill, M. A.; Sampath, R. S.; Allu, S.; Hamilton, S. P., A validation study of pin heat transfer for UO2 fuel based on the IFA-432 experiments, Nucl. Sci. Eng., 177, 3, 275-290 (2014)
[45] Phillippe, A. M.; Clarno, K. T.; Banfield, J. E.; Ott, L. J.; Philip, B.; Berrill, M. A.; Sampath, R. S.; Allu, S.; Hamilton, S. P., A validation study of pin heat transfer for MOX fuel based on the IFA-597 experiments, Nucl. Sci. Eng., 178, 172-185 (2014)
[46] Hamilton, S.; Clarno, K.; Berrill, M.; Evans, T.; Davidson, G.; Lefebvre, R.; Sampath, R., Multiphysics simulations for LWR analysis, (International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID (2013))
[47] Hamilton, S., Numerical solution of the \(k\)-eigenvalue problem (2011), Emory University: Emory University Atlanta, GA, Ph.D. thesis
[48] Hamilton, S.; Benzi, M., A Davidson method for the \(k\)-eigenvalue problem, Trans. Am. Nucl. Soc., 105, 432-434 (2011)
[49] Hamilton, S. P.; Evans, T. M., Efficient solution of the simplified \(P_N\) equations, J. Comput. Phys., 285, 155-170 (2015) · Zbl 1351.82123
[50] Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M., ML 5.0 smoothed aggregation user’s guide (2006), Sandia National Laboratories, Tech. rep. SAND2006-2649
[51] Eisenstat, S. C.; Walker, H. F., Globally convergent inexact Newton methods, SIAM J. Optim., 4, 2, 393-422 (1994) · Zbl 0814.65049
[52] Pawlowski, R. P.; Shadid, J. N.; Simonis, J. P.; Walker, H. F., Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations, SIAM Rev., 48, 4, 700-721 (2006) · Zbl 1110.65039
[53] Toth, A.; Kelley, C.; Slattery, S.; Hamilton, S.; Clarno, K.; Pawlowski, R., Analysis of Anderson acceleration on a simplified neutronics/thermal hydraulics system, (Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA), and the Monte Carlo (MC) Method. Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA), and the Monte Carlo (MC) Method, Nashville, TN (2015))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.