×

Uniqueness theorem on weak solutions to the Keller-Segel system of degenerate and singular types. (English) Zbl 1336.35009

Summary: The uniqueness of weak solutions to the Keller-Segel systems of degenerate and singular types is proven in the class of Hölder continuous functions. Hölder continuity is expected to be an optimal regularity for weak solutions of the degenerate Keller-Segel systems under consideration. Our proof is based on the vanishing viscosity duality method.

MSC:

35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
92C17 Cell movement (chemotaxis, etc.)
35D30 Weak solutions to PDEs
35K65 Degenerate parabolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amann, H., Linear and Quasilinear Parabolic Problems, Abstract Linear Theory (1995), Birkhäuser Verlag
[2] Aronszajn, N.; Smith, K. T., Theory of Bessel Potentials. Part I, Ann. Inst. Fourier (Grenoble), 11, 385-475 (1961) · Zbl 0102.32401
[3] Bergh, J.; Löfström, J., Interpolation Spaces, An Introduction, Grundlehren Math. Wiss., vol. 223 (1976), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0344.46071
[4] Bian, S.; Liu, J.-G.; Zou, C., Ultra-contractivity for Keller-Segel model with diffusion exponent \(m > 1 - 2 / d\), Kinet. Relat. Models, 7, 9-28 (2014)
[5] Bian, S.; Liu, J.-G., Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent \(m > 0\), Comm. Math. Phys., 323, 1017-1070 (2013) · Zbl 1292.35061
[6] Biler, P.; Stańczy, R., Nonlinear diffusion models for self-gravitating particles. Free boundary problems, Internat. Ser. Numer. Math., 154, 107-116 (2007) · Zbl 1113.35328
[7] Biler, P.; Nadzieja, T.; Stańczy, R., Nonisothermal systems of self-attracting Fermi-Dirac particles, Banach Center Publ., 66, 61-78 (2004) · Zbl 1146.35415
[8] Blanchet, A.; Carrillo, J.; Laurençot, P., Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35, 133-168 (2009) · Zbl 1172.35035
[9] Blanchet, A.; Laurençot, P., The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \(R^d, d \geq 3\), Comm. Partial Differential Equations, 38, 658-686 (2013) · Zbl 1282.35202
[10] Blanchet, A.; Laurençot, P., Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, Commun. Pure Appl. Anal., 38, 47-60 (2012) · Zbl 1264.35057
[11] Cieślak, T.; Stinner, C., New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258, 2080-2113 (2015) · Zbl 1331.35041
[12] Cieślak, T.; Stinner, C., Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252, 5832-5851 (2012) · Zbl 1252.35087
[13] Cieślak, T.; Laurençot, P., Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 437-446 (2010) · Zbl 1270.35377
[14] Dore, G.; Venni, A., On the closedness of the sum of two closed operators, Math. Z., 166, 189-201 (1987) · Zbl 0615.47002
[15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0562.35001
[16] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[17] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252, 2469-2491 (2012) · Zbl 1241.35118
[18] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252, 1421-1440 (2012) · Zbl 1237.35093
[20] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[21] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305, 566-588 (2005) · Zbl 1065.35063
[22] Kozono, H.; Sugiyama, Y.; Yahagi, Y., Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller-Segel system, J. Differential Equations, 253, 2295-2313 (2012) · Zbl 1255.35005
[24] Kuroda, S. T., Supekutoru-riron. II [Spectral theory. II], Iwanami Shoten Kiso Sūgaku, vol. 17 (1983), (in Japanese)
[25] Mizuno, M., Hölder estimates for solutions of the Cauchy problem for the porous medium equation with external forces, Manuscripta Math., 141, 273-313 (2013) · Zbl 1267.35052
[26] Mizuno, M.; Ogawa, T., Regularity and asymptotic behavior for the Keller-Segel system of degenerate type with critical nonlinearity, J. Math. Sci. Univ. Tokyo, 20, 375-433 (2013) · Zbl 1302.35088
[27] Prüss, J.; Sohr, H., Imaginary powers of elliptic second order differential operators in \(L^p\)-spaces, Hiroshima Math. J., 23, 161-192 (1993) · Zbl 0790.35023
[28] Sugiyama, Y., Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19, 841-876 (2006) · Zbl 1212.35240
[29] Sugiyama, Y., Aronson-Benilan type estimate and the optimal Hölder continuity of weak solutions for the 1-D degenerate Keller-Segel systems, Rev. Mat. Iberoam., 26, 891-913 (2010) · Zbl 1213.35154
[30] Sugiyama, Y., Uniqueness and regularity of weak solutions for the 1-D degenerate Keller-Segel systems, Nonlinear Anal., Theory Methods Appl., 73, 2230-2244 (2010) · Zbl 1201.35008
[31] Sugiyama, Y.; Kunii, H., Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227, 333-364 (2006) · Zbl 1102.35046
[32] Sugiyama, Y.; Yahagi, Y., Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250, 3047-3087 (2011) · Zbl 1227.35097
[33] Sugiyama, Y.; Yahagi, Y., Uniqueness and continuity of solution for the initial data in the scaling invariant class of degenerate Keller-Segel system, J. Evol. Equ., 11, 319-337 (2010) · Zbl 1242.35007
[34] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30 (1970), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0207.13501
[35] Tao, Y.; Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 157-178 (2013) · Zbl 1283.35154
[36] Tao, Y.; Winkler, M., Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32, 1901-1914 (2012) · Zbl 1276.35105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.