Kasuya, Hisashi Central theorems for cohomologies of certain solvable groups. (English) Zbl 1401.20035 Trans. Am. Math. Soc. 369, No. 4, 2879-2896 (2017). Summary: We show that the group cohomology of torsion-free virtually polycyclic groups and the continuous cohomology of simply connected solvable Lie groups can be computed by the rational cohomology of algebraic groups. Our results are generalizations of certain results on the cohomology of solvmanifolds and infra-solvmanifolds. Moreover as an application of our results, we give a new proof of the surprising cohomology vanishing theorem given by K. Dekimpe and P. Igodt [Invent. Math. 129, No. 1, 121–140 (1997; Zbl 0867.20031)]. Cited in 2 Documents MSC: 20F16 Solvable groups, supersolvable groups 20G10 Cohomology theory for linear algebraic groups 20J06 Cohomology of groups 22E41 Continuous cohomology of Lie groups 22E25 Nilpotent and solvable Lie groups 17B56 Cohomology of Lie (super)algebras 57T15 Homology and cohomology of homogeneous spaces of Lie groups Keywords:group cohomology of torsion-free virtually polycyclic group; continuous cohomology of simply connected solvable Lie group; rational cohomology of algebraic group; de Rham cohomology of solvmanifold PDF BibTeX XML Cite \textit{H. Kasuya}, Trans. Am. Math. Soc. 369, No. 4, 2879--2896 (2017; Zbl 1401.20035) Full Text: DOI arXiv References: [1] Arapura, Donu; Nori, Madhav, Solvable fundamental groups of algebraic varieties and K\"ahler manifolds, Compositio Math., 116, 2, 173-188, (1999) · Zbl 0971.14020 [2] Baues, Oliver, Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology, 43, 4, 903-924, (2004) · Zbl 1059.57022 [3] Baues, Oliver; Grunewald, Fritz, Automorphism groups of polycyclic-by-finite groups and arithmetic groups, Publ. Math. Inst. Hautes \'Etudes Sci., 104, 213-268, (2006) · Zbl 1121.20027 [4] Baues, O.; Klopsch, B., Deformations and rigidity of lattices in solvable Lie groups, J. Topol., 6, 4, 823-856, (2013) · Zbl 1287.22004 [5] Benoist, Yves; Dekimpe, Karel, The uniqueness of polynomial crystallographic actions, Math. Ann., 322, 3, 563-571, (2002) · Zbl 0999.20043 [6] Brown, Kenneth S., Cohomology of groups, Graduate Texts in Mathematics 87, x+306 pp., (1982), Springer-Verlag, New York-Berlin [7] Brown, Kenneth S., Homological criteria for finiteness, Comment. Math. Helv., 50, 129-135, (1975) · Zbl 0302.18010 [8] Borel, Armand, Linear algebraic groups, Graduate Texts in Mathematics 126, xii+288 pp., (1991), Springer-Verlag, New York · Zbl 0726.20030 [9] Borel, A.; Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs 67, xviii+260 pp., (2000), American Mathematical Society, Providence, RI · Zbl 0980.22015 [10] Dekimpe, Karel; Igodt, Paul, Polycyclic-by-finite groups admit a bounded-degree polynomial structure, Invent. Math., 129, 1, 121-140, (1997) · Zbl 0867.20031 [11] Dungey, Nick; ter Elst, A. F. M.; Robinson, Derek W., Analysis on Lie groups with polynomial growth, Progress in Mathematics 214, viii+312 pp., (2003), Birkh\"auser Boston, Inc., Boston, MA · Zbl 1041.43003 [12] Hain, Richard M., The Hodge de Rham theory of relative Malcev completion, Ann. Sci. \'Ecole Norm. Sup. (4), 31, 1, 47-92, (1998) · Zbl 0911.14008 [13] Hain, Richard, Remarks on non-abelian cohomology of proalgebraic groups, J. Algebraic Geom., 22, 3, 581-598, (2013) · Zbl 1312.14071 [14] Hochschild, G., Cohomology of algebraic linear groups, Illinois J. Math., 5, 492-519, (1961) · Zbl 0103.26502 [15] Hochschild, G., Introduction to affine algebraic groups, vii+116 pp., (1971), Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam · Zbl 0221.20055 [16] Hochschild, G.; Mostow, G. D., Cohomology of Lie groups, Illinois J. Math., 6, 367-401, (1962) · Zbl 0111.03302 [17] Hochschild, G.; Serre, J.-P., Cohomology of group extensions, Trans. Amer. Math. Soc., 74, 110-134, (1953) · Zbl 0050.02104 [18] Kasuya, Hisashi, Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems, J. Differential Geom., 93, 2, 269-297, (2013) · Zbl 1373.53069 [19] Jantzen, Jens Carsten, Representations of algebraic groups, Pure and Applied Mathematics 131, xiv+443 pp., (1987), Academic Press, Inc., Boston, MA · Zbl 0654.20039 [20] Lambe, Larry A.; Priddy, Stewart B., Cohomology of nilmanifolds and torsion-free, nilpotent groups, Trans. Amer. Math. Soc., 273, 1, 39-55, (1982) · Zbl 0507.22008 [21] McCleary, John, A user’s guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, xvi+561 pp., (2001), Cambridge University Press, Cambridge · Zbl 0959.55001 [22] Mostow, G. D., Fully reducible subgroups of algebraic groups, Amer. J. Math., 78, 200-221, (1956) · Zbl 0073.01603 [23] Mostow, G. D., Cohomology of topological groups and solvmanifolds, Ann. of Math. (2), 73, 20-48, (1961) · Zbl 0103.26501 [24] Nomizu, Katsumi, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2), 59, 531-538, (1954) · Zbl 0058.02202 [25] Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences 41, iv+248 pp., (1994), Springer-Verlag, Berlin [26] Lie groups and Lie algebras. II, Encyclopaedia of Mathematical Sciences 21, vi+223 pp., (2000), Springer-Verlag, Berlin [27] Raghunathan, M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, ix+227 pp., (1972), Springer-Verlag, New York-Heidelberg · Zbl 0254.22005 [28] Voisin, Claire, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics 76, x+322 pp., (2002), Cambridge University Press, Cambridge · Zbl 1005.14002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.