Angella, Daniele; Kasuya, Hisashi Symplectic Bott-Chern cohomology of solvmanifolds. (English) Zbl 1428.53060 J. Symplectic Geom. 17, No. 1, 41-91 (2019). MSC: 53C30 53C55 32S50 57T10 22E25 58A14 53D35 PDF BibTeX XML Cite \textit{D. Angella} and \textit{H. Kasuya}, J. Symplectic Geom. 17, No. 1, 41--91 (2019; Zbl 1428.53060) Full Text: DOI arXiv
Kasuya, Hisashi Techniques of constructions of variations of mixed Hodge structures. (English) Zbl 1423.14072 Geom. Funct. Anal. 28, No. 2, 393-442 (2018). MSC: 14D07 58A14 53C55 55P62 55N25 32S35 PDF BibTeX XML Cite \textit{H. Kasuya}, Geom. Funct. Anal. 28, No. 2, 393--442 (2018; Zbl 1423.14072) Full Text: DOI arXiv
Kasuya, Hisashi A differential geometric viewpoint of mixed Hodge structures. (English) Zbl 1387.58006 Adachi, Toshiaki (ed.) et al., Contemporary perspectives in differential geometry and its related fields. Proceedings of the 5th international colloquium on differential geometry and its related fields, Veliko Tarnovo, Bulgaria, September 6–10, 2016. Hackensack, NJ: World Scientific (ISBN 978-981-3220-90-4/hbk; 978-981-3220-92-8/ebook). 33-51 (2018). Reviewer: Treanta Savin (Bucharest) MSC: 58A14 58A12 PDF BibTeX XML Cite \textit{H. Kasuya}, in: Contemporary perspectives in differential geometry and its related fields. Proceedings of the 5th international colloquium on differential geometry and its related fields, Veliko Tarnovo, Bulgaria, September 6--10, 2016. Hackensack, NJ: World Scientific. 33--51 (2018; Zbl 1387.58006) Full Text: DOI
Kasuya, Hisashi Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds. (Structures de Hodge mixtes et modèles minimaux de Sullivan des variétés sasakiennes.) (English. French summary) Zbl 1403.53040 Ann. Inst. Fourier 67, No. 6, 2533-2546 (2017). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53C25 55P62 58A14 PDF BibTeX XML Cite \textit{H. Kasuya}, Ann. Inst. Fourier 67, No. 6, 2533--2546 (2017; Zbl 1403.53040) Full Text: DOI arXiv
Kasuya, Hisashi Generalized deformations and holomorphic Poisson cohomology of solvmanifolds. (English) Zbl 1405.32013 Ann. Global Anal. Geom. 51, No. 2, 155-177 (2017). MSC: 32G05 17B30 32M10 53D18 58H15 PDF BibTeX XML Cite \textit{H. Kasuya}, Ann. Global Anal. Geom. 51, No. 2, 155--177 (2017; Zbl 1405.32013) Full Text: DOI arXiv
Kasuya, Hisashi Flat bundles and hyper-Hodge decomposition on solvmanifolds. (English) Zbl 1327.53065 Int. Math. Res. Not. 2015, No. 19, 9638-9659 (2015). MSC: 53C30 22E25 58A14 PDF BibTeX XML Cite \textit{H. Kasuya}, Int. Math. Res. Not. 2015, No. 19, 9638--9659 (2015; Zbl 1327.53065) Full Text: DOI arXiv
Angella, Daniele; Kasuya, Hisashi Hodge theory for twisted differentials. (English) Zbl 1320.32027 Complex Manifolds 1, 64-85 (2014). MSC: 32M10 53C30 58A14 PDF BibTeX XML Cite \textit{D. Angella} and \textit{H. Kasuya}, Complex Manifolds 1, 64--85 (2014; Zbl 1320.32027) Full Text: DOI arXiv
Kasuya, Hisashi Examples of non-Kähler solvmanifolds admitting Hodge decomposition. (English) Zbl 1321.53058 Suh, Young Jin (ed.) et al., Real and complex submanifolds. Proceedings of the ICM 2014 satellite conference and of the 18th international workshop on differential geometry, Daejeon, Korea, August 10–12, 2014. Tokyo: Springer (ISBN 978-4-431-55214-7/hbk; 978-4-431-55215-4/ebook). Springer Proceedings in Mathematics & Statistics 106, 229-244 (2014). MSC: 53C30 22E25 58A14 PDF BibTeX XML Cite \textit{H. Kasuya}, in: Real and complex submanifolds. Proceedings of the ICM 2014 satellite conference and of the 18th international workshop on differential geometry, Daejeon, Korea, August 10--12, 2014. Tokyo: Springer. 229--244 (2014; Zbl 1321.53058) Full Text: DOI
Kasuya, Hisashi de Rham and Dolbeault cohomology of solvmanifolds with local systems. (English) Zbl 1314.17010 Math. Res. Lett. 21, No. 4, 781-805 (2014). Reviewer: Viviana del Barco (Rosario) MSC: 17B56 22E25 32C35 58A12 PDF BibTeX XML Cite \textit{H. Kasuya}, Math. Res. Lett. 21, No. 4, 781--805 (2014; Zbl 1314.17010) Full Text: DOI arXiv
Kasuya, Hisashi Geometrical formality of solvmanifolds and solvable Lie type geometries. (English) Zbl 1295.53024 RIMS Kôkyûroku Bessatsu B39, 21-33 (2013). Reviewer: Andrew Bucki (Edmond) MSC: 53C20 22E25 58A14 53C30 PDF BibTeX XML Cite \textit{H. Kasuya}, RIMS Kôkyûroku Bessatsu B39, 21--33 (2013; Zbl 1295.53024) Full Text: arXiv