zbMATH — the first resource for mathematics

Cohomologies of generalized complex manifolds and nilmanifolds. (English) Zbl 1362.57046
For a compact differentiable manifold \(M\) of dimension \(2n\), the vector bundle \(TM\oplus T^*M\) endowed with the natural symmetric pairing \(\langle X+\xi\mid Y+\eta\rangle=\frac12(\xi(Y)+\eta(X))\), defines the action \((X+\xi)\cdot\rho=i_X\rho+\xi\wedge\rho\) on differential forms \(\wedge^\bullet T^*M\). If \([X+\xi,Y+\eta]=[X,Y]+\mathcal{L}_X\eta-\mathcal{L}_Y\xi-\frac12{d}(\imath_X\eta-\imath_Y\xi)\) is the Courant bracket on the space \(C^\infty(TX\oplus T^*M)\), then a generalized complex structure on \(M\) is an endomorphism \(\mathcal{J}\in\text{End}(TX\oplus T^*M)\) such that \(\mathcal{J}^2=-1\) and the \(i\)-eigenbundle \(L\subset (TX\oplus T^*M)\otimes\mathbb C\) is involutive with respect to the Courant bracket. A generalized complex structure \(\mathcal{J}\) on \(M\) of dimension \(2n\) defines a decomposition of complex differential forms \(\wedge^\bullet T^*M\otimes\mathbb C=\bigoplus_{j=-n}^nU^j\) with the bi-differential \(\mathbb Z\)-graded complex \((\mathcal{U},\partial,\overline\partial)\). The cohomologies \(GH^\bullet_\partial=\frac{\ker\partial}{\text{im}\partial}\), \(GH^\bullet_{\overline\partial}=\frac{\ker\overline\partial}{\text{im}\overline\partial}\), and \(GH^\bullet_{BC}=\frac{\ker\partial\cap\ker\overline\partial}{\text{im}\partial\overline\partial}\), \(GH^\bullet_{A}=\frac{\ker\partial\overline\partial}{\text{im}\partial+\text{im}\overline\partial}\) are the generalized Dolbeault and the generalized Bott-Chern and Aeppli cohomologies, respectively. For sufficiently small \(\varepsilon\in C^\infty(\wedge^2L^*)\), the small deformation \(L_\varepsilon=(1+\varepsilon)L\subset(TX\oplus T^*M)\otimes\mathbb C\) defines the endomorphism \(\mathcal{J}_\varepsilon\in\text{End}(TX\oplus T^*M)\) whose \(i\)-eigenbundle and \(-i\)-eigenbundle are \(L_\varepsilon\) and \(\overline L_\varepsilon\), respectively. Then \(\mathcal{J}_\varepsilon\) is a generalized complex structure if and only if \(\varepsilon\) satisfies the Maurer-Cartan equation \(d_L\varepsilon+\frac12[\varepsilon,\varepsilon]=0\).
In this paper, the authors investigate generalized cohomologies of a nilmanifold \(M =\Gamma\setminus G\), that is, a compact quotient of a real simply connected nilpotent Lie group \(G\) by a discrete co-compact subgroup \(\Gamma\), with left-invariant generalized complex structures on \(M\), equivalently, linear generalized complex structures on the Lie algebra \(\mathfrak{g}\) of \(G\). There is a generalized complex decomposition also at the level of the Lie algebra, namely, \(\wedge^\bullet\mathfrak{g}^*=\bigoplus_J\mathfrak{U}^j\), and a bi-differential \(\mathbb Z\)-graded sub-complex \((\mathfrak{U}^\bullet,\partial,\overline\partial)\mapsto(\mathcal{U}^\bullet,\partial,\overline\partial)\). It induces the map \(GH^\bullet_{\overline\partial}(\mathfrak{g})\to GH^\bullet_{\overline\partial}(M)\) in cohomology, which is in fact always injective. The authors show that for a nilmanifold \(M =\Gamma\setminus G\) with a left-invariant generalized complex structure \(\mathcal{J}\) and the Lie algebra \(\mathfrak{g}\) of \(G\), if the isomorphism \(GH^\bullet_{\overline\partial}(\mathfrak{g})\cong GH^\bullet_{\overline\partial}(\Gamma\setminus G)\) holds on the original generalized complex structure \(\mathcal{J}\), then the same isomorphism holds on the deformed generalized complex structure \(\mathcal{J}_{\varepsilon(t)}\) for sufficiently small \(t\). They also show that if the isomorphism \(GH^\bullet_{\overline\partial}(\mathfrak{g})\cong GH^\bullet_{\overline\partial}(\Gamma\setminus G)\) holds on the original generalized complex structure \(\mathcal{J}\), then any sufficiently small deformation of the generalized complex structure is equivalent to a left-invariant generalized complex structure \(\mathcal{J}_{\varepsilon}\) with \(\varepsilon\in C^\infty(\wedge^2\mathfrak{L}^*)\) satisfying the Maurer-Cartan equation.

57T15 Homology and cohomology of homogeneous spaces of Lie groups
53D18 Generalized geometries (à la Hitchin)
32G07 Deformations of special (e.g., CR) structures
Full Text: DOI arXiv
[1] Angella, D, The cohomologies of the Iwasawa manifold and of its small deformations, J. Geom. Anal., 23, 1355-1378, (2013) · Zbl 1278.32013
[2] Angella, D., Calamai, S., Latorre, A.: On cohomological decomposition of generalized-complex structures. J. Geom. Phys. 98, 227-241 (2015) · Zbl 1329.32012
[3] Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifoldsand closedness of some properties, arXiv:1305.6709v2 [math.CV], to appear in Mathematica Universalis · Zbl 1384.32018
[4] Angella, D., Kasuya, H.: Symplectic Bott-Chern cohomology of solvmanifolds, arXiv:1308.4258 [math.SG] · Zbl 1384.22004
[5] Cavalcanti, G.R.: New aspects of the \(dd^c\)-lemma, Oxford University D. Phil thesis, arXiv:math/0501406v1 [math.DG] · Zbl 1194.32006
[6] Cavalcanti, GR, The decomposition of forms and cohomology of generalized complex manifolds, J. Geom. Phys., 57, 121-132, (2006) · Zbl 1106.57019
[7] Cavalcanti, GR; Gualtieri, M, Generalized complex structures on nilmanifolds, J. Symplectic Geom., 2, 393-410, (2004) · Zbl 1079.53106
[8] Console, S; Fino, A, Dolbeault cohomology of compact nilmanifolds, Transform. Groups, 6, 111-124, (2001) · Zbl 1028.58024
[9] Console, S, Dolbeault cohomology and deformations of nilmanifolds, Rev. Un. Mat. Argentina, 47, 51-60, (2006) · Zbl 1187.58024
[10] Gualtieri, M, Generalized complex geometry, Ann. Math. (2), 174, 75-123, (2011) · Zbl 1235.32020
[11] Hattori, A, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect., 1960, 289-331, (1960) · Zbl 0099.18003
[12] Hitchin, NJ, Generalized Calabi-Yau manifolds, Q. J. Math., 54, 281-308, (2003) · Zbl 1076.32019
[13] Kasuya, H.: Differential Gerstenhaber algebras and generalized deformations of solvmanifolds. arXiv:math/1211.4188v3 [math.DG] · Zbl 1106.57019
[14] McCleary, J.: A user’s guide to spectral sequences, 2nd edn. In: Cambridge Studies in Advanced Mathematics, vol. 58. Cambridge University Press, Cambridge (2001) · Zbl 0959.55001
[15] Nomizu, K, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math., 59, 531-538, (1954) · Zbl 0058.02202
[16] Raghunathan, M.S.: Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68. Springer, New York (1972) · Zbl 0254.22005
[17] Rollenske, S, Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds, J. Lond. Math. Soc., 79, 346-362, (2009) · Zbl 1194.32006
[18] Tsai, C.-J., Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge Theory on Symplectic Manifolds: III, arXiv:1402.0427v2 [math.SG] · Zbl 1353.53085
[19] Tseng, L-S; Yau, S-T, Cohomology and Hodge theory on symplectic manifolds: I, J. Differ. Geom., 91, 383-416, (2012) · Zbl 1275.53079
[20] Tseng, L-S; Yau, S-T, Cohomology and Hodge theory on symplectic manifolds: II, J. Differ. Geom., 91, 417-443, (2012) · Zbl 1275.53080
[21] Tseng, L-S; Yau, S-T, Generalized cohomologies and supersymmetry, Commun. Math. Phys., 326, 875-885, (2014) · Zbl 1288.81125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.