zbMATH — the first resource for mathematics

Compactness of \(D\)-isospectral metrics. (English) Zbl 1167.58017
The author generalizes, to the case of Schrödinger operators \(D\), some compactness results on the spaces of isospectral metrics as well as results of finiteness of diffeomorphism types of isospectral manifolds. In dimension 3, under lower bounds on the Ricci curvature, he gives a result of compactness modulo gauge equivalence of isospectral metrics on a given manifold. In dimensions other than 4, he shows that certain classes of isospectral manifolds (relatively to a family of Schrödinger operators) satisfying lower bounds on the sectional curvatures contain finitely many types of diffeomorphisms.

58J53 Isospectrality
Full Text: DOI
[1] DOI: 10.1007/978-3-662-13006-3 · doi:10.1007/978-3-662-13006-3
[2] Brooks R., J. Reine Angew. Math. 426 pp 62–
[3] DOI: 10.1215/S0012-7094-89-05808-0 · Zbl 0667.53037 · doi:10.1215/S0012-7094-89-05808-0
[4] DOI: 10.2307/2373498 · Zbl 0194.52902 · doi:10.2307/2373498
[5] DOI: 10.1007/BF01214381 · Zbl 0329.53035 · doi:10.1007/BF01214381
[6] Chang S. Y. A., J. Amer. Math. Soc. 3 pp 117–
[7] DOI: 10.1103/PhysRevLett.19.1095 · doi:10.1103/PhysRevLett.19.1095
[8] Gilbarg D., Elliptic Partial Differential Equations of Second Order (1998)
[9] Gilkey P. B., Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (1994)
[10] DOI: 10.1090/conm/073/954631 · doi:10.1090/conm/073/954631
[11] Grove K., Invent. Math. 99 pp 125–
[12] DOI: 10.1007/978-1-4684-9449-5 · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[13] Kasue A., Nagoya Math. J. 114 pp 21– · Zbl 0682.53042 · doi:10.1017/S0027763000001380
[14] DOI: 10.1016/0022-1236(88)90071-7 · Zbl 0653.53021 · doi:10.1016/0022-1236(88)90071-7
[15] DOI: 10.2140/pjm.1997.181.187 · Zbl 0885.58092 · doi:10.2140/pjm.1997.181.187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.