Columnar vortices induced by dielectrophoretic force in a stationary cylindrical annulus filled with a dielectric liquid. (English) Zbl 1461.76554

Summary: The dynamics of flow of a dielectric fluid in a vertical cylindrical annulus with a fixed temperature difference and an increasing alternating electric tension has been investigated using a direct numerical simulation (DNS). The temperature difference imposed on the cylindrical surfaces induces a radial temperature gradient perpendicular to the ground gravity which generates a baroclinic flow ascending near the hot surface and descending near the cold one. The electric field coupled with the permittivity gradient generates a dielectrophoretic buoyancy force which is a source of vorticity. Above a critical value of the electric tension, the flow bifurcates to a pattern of stationary columnar vortices. These columnar vortices which characterize the thermoelectric convection are not axially invariant, in contrast with classical Taylor columns. They bifurcate to regular wave patterns and then to spatio-temporal chaotic patterns when the electric field intensity is increased. The flow and temperature fields, the kinetic energy and the enstrophy of thermoelectric convective regimes are computed for different values of the electric tension.


76W05 Magnetohydrodynamics and electrohydrodynamics
76E20 Stability and instability of geophysical and astrophysical flows
Full Text: DOI


[1] Ali, M. & Mcfadden, G. B.2005Linear stability of cylindrical Couette flow in the convection regime. Phys. Fluids17, 054112.
[2] Alonso, A., Net, M. & Knobloch, E.1995On the transition to columnar convection. Phys. Fluids7, 935-940.
[3] Alonso, A., Net, M., Mercader, I. & Knobloch, E.1999Onset of convection in a rotating annulus with radial gravity and heating. Fluid Dyn. Res.24 (3), 133-145.
[4] Atten, P. & Elouadie, L.1995EHD convection in a dielectric liquid subjected to unipolar injection: coaxial wire/cylinder geometry. J. Electrostat.34, 279-297.
[5] Auer, M., Busse, F. H. & Clever, R. M.1995Three-dimensional convection driven by centrifugal buoyancy. J. Fluid Mech.301, 371-382. · Zbl 0848.76024
[6] Bahloul, A., Mutabazi, I. & Ambari, A.2000Codimension 2 points in the flow inside a cylindrical annulus with a radial temperature gradient. Eur. Phys. J. Appl. Phys.9 (3), 253-264.
[7] Barbic, M., Mock, J. J., Gray, A. P. & Schultz, S.2001Electromagnetic micromotor for microfluidics applications. Appl. Phys. Lett.79 (9), 1399-1401.
[8] Bird, R. B., Stewart, W. E. & Lightfoot, E. N.1960Transport Phenomena, 2nd edn. John Wiley & Sons.
[9] Bot, P., Cadot, O. & Mutabazi, I.1998Secondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor-Dean system. Phys. Rev. E58 (3), 3089-3097.
[10] Bot, P. & Mutabazi, I.2000Dynamics of spatio-temporal defects in the Taylor-Dean system. Eur. Phys. J. B13, 141-155.
[11] Busse, F. H. & Carrigan, C. R.1974Convection induced by centrifugal buoyancy. J. Fluid Mech.62, 579-592. · Zbl 0282.76039
[12] Chandra, B. & Smylie, D. E.1972A laboratory model of thermal convection under a central force field. Geophys. Fluid Dyn.3 (3), 211-224.
[13] Cross, M. C. & Hohenberg, P. C.1993Pattern formation outside of equilibrium. Rev. Mod. Phys.65 (3), 851-1112. · Zbl 1371.37001
[14] Dahley, N., Futterer, B., Egbers, C., Crumeyrolle, O. & Mutabazi, I.2011Parabolic flight experiment “Convection in a Cylinder” - convection patterns in varying buoyancy forces. J. Phys: Conf. Ser.318, 082003.
[15] Davidson, P. A.2013Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press. · Zbl 1282.76001
[16] Futterer, B., Gellert, M., Von Larcher, T. & Egbers, C.2008Thermal convection in rotating spherical shells: an experimental and numerical approach within GeoFlow. Acta Astronaut.62, 300-307.
[17] Futterer, B., Kerbs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, C.2013Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. J. Fluid Mech.735, 647-683. · Zbl 1294.76015
[18] Ghil, M., Read, P. & Smith, L.2010Geophyiscal flows as dynamical systems: the influence of Hide’s experiments. Astron. Geophys.51, 4.28-4.35.
[19] Hart, J. E., Glatzmaier, G. A. & Toomre, J.1986Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech.173, 519-544.
[20] Jeong, J. & Hussain, F.1995On the identification of a vortex. J. Fluid Mech.285, 69-94. · Zbl 0847.76007
[21] Kang, C., Meyer, A., Yoshikawa, H. N. & Mutabazi, I.2017Numerical simulation of circular Couette flow under a radial thermo-electric body force. Phys. Fluids29, 114105.
[22] Kang, C., Meyer, A., Yoshikawa, H. N. & Mutabazi, I.2019aNumerical study of thermal convection induced by centrifugal buoyancy in a rotating cylindrical annulus. Phys. Rev. Fluids4, 043501.
[23] Kang, C., Meyer, A., Yoshikawa, H. N. & Mutabazi, I.2019bThermoelectric convection in a dielectric liquid inside a cylindrical annulus with a solid-body rotation. Phys. Rev. Fluids4, 093502.
[24] Kang, C. & Mutabazi, I.2019Dielectrophoretic buoyancy and heat transfer in a dielectric liquid contained in a cylindrical annular cavity. J. Appl. Phys.125, 184902.
[25] Kang, C., Yang, K.-S. & Mutabazi, I.2015Thermal effect on large-aspect-ratio Couette-Taylor system: numerical simulation. J. Fluid Mech.771, 57-78.
[26] Kim, J. & Moin, P.1985Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.59, 308-323. · Zbl 0582.76038
[27] Landau, L. & Lifshitz, E.1984Electrodynamics of Continous Media. Volume 8 in Course of Theoretical Physics, 2nd edn. Elsevier Buttherwoth-Heinemann.
[28] Landau, L. & Lifshitz, E.2000Mechanics. Volume 1 in Course of Theoretical Physics, 2nd edn. Elsevier Buttherwoth-Heinemann.
[29] Lappa, M.2012Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons. · Zbl 1267.76001
[30] Le Quéré, P. & Abcha, F.1990Sur une classe de solutions exactes des équations de Navier-Stokes du fluide de Boussinesq. C.R. Acad. Sci. Paris310 (Série II), 353-359. · Zbl 0691.76026
[31] Lin, H.2009Electrokinetic instability in microchannel flows: a review. Mech. Res. Commun.36, 33-38. · Zbl 1258.76094
[32] Lopez, J. M., Marques, F. & Avila, M.2015Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders. Intl J. Heat Mass Transfer90, 959-967.
[33] Malik, S. V., Yoshikawa, H. N., Crumeyrolle, O. & Mutabazi, I.2012Thermo-electro-hydro-dynamic instabilities in a dielectric liquid under microgravity. Acta Astronaut.81, 563-569.
[34] Manneville, P.1990Dissipative Structures and Weak Turbulence. Academic. · Zbl 0714.76001
[35] Mccluskey, F. M. J., Atten, P. & Perez, A. T.1991Heat transfer enhancement by electroconvection resulting from an injected space charge between parallel plates. Intl J. Heat Mass Transfer34, 2237-2250.
[36] Meier, M., Jongmanns, M., Meyer, A., Seelig, T., Egbers, C. & Mutabazi, I.2018Flow pattern and heat transfer in a cylindrical annulus under 1 g and low-g conditions: experiments. Microgravity Sci. Technol.30 (5), 699-712.
[37] Melcher, J. R.1981Continuum Electromechanics. MIT Press.
[38] Meyer, A., Crumeyrolle, O., Mutabazi, I., Meier, M., Yongmanns, M., Renoult, M.-C., Seelig, T. & Egbers, C.2018Flow patterns and heat transfer in a cylindrical annulus under 1 g and low-g conditions: theory and simulation. Microgravity Sci. Technol.30 (5), 653-662.
[39] Meyer, A., Jongmanns, M., Meier, M., Egbers, C. & Mutabazi, I.2017Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity. CR Mécanique345, 11-20.
[40] Meyer, A., Meier, M., Jongmanns, M., Seelig, T., Egbers, C. & Mutabazi, I.2019Effect of initial conditions on the growth of thermoelectric instabilities during parabolic flights. Microgravity Sci. Technol.31 (5), 715-721.
[41] Mutabazi, I., Yoshikawa, H. N., Tadie Fogaing, M., Travnikov, V., Crumeyrolle, O., Futterer, B. & Egbers, C.2016Thermo-electro-hydrodynamic convection under microgravity: a review. Fluid Dyn. Res.48, 061413.
[42] Plaut, E. & Busse, F. H.2002Low-Prandtl-number convection in a rotating cylindrical annulus. J. Fluid Mech.464, 345-363. · Zbl 1065.76075
[43] Pope, S. B.2000Turbulent Flows. Cambridge University Press.
[44] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.1992Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press. · Zbl 0778.65002
[45] Roberts, P. H.1969Electrohydrodynamic convection. Q. J. Mech. Appl. Maths22, 211-220.
[46] Thomas, R. W. & De Vahl Davis, G.1970 Natural convection in annular and rectangular cavities: a numerical study. In Proceedings of the 4th International Heat Transfer Conference, Paris, paper NC 2.4. Elsevier.
[47] Travnikov, V., Crumeyrolle, O. & Mutabazi, I.2015Numerical investigation of the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Phys. Fluids27, 054103.
[48] Travnikov, V., Crumeyrolle, O. & Mutabazi, I.2016Influence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Acta Astronaut.129, 88-94.
[49] Turnbull, R. J.1969Effect of dielectrophoretic forces on the Bénard instability. Phys. Fluids12, 1809-1815.
[50] Wadsworth, D. C. & Mudawar, I.1990Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid. Trans. ASME J. Heat Transfer112 (4), 891-898.
[51] Yavorskaya, I. M., Fomina, N. I. & Belyaev, Y. N.1984A simulation of central-symmetry convection in microgravity conditions. Acta Astronaut.11, 179-183. · Zbl 0549.76074
[52] Yoshikawa, H. N., Crumeyrolle, O. & Mutabazi, I.2013Dielectrophoretic force-driven thermal convection in annular geometry. Phys. Fluids25, 024106.
[53] Yoshikawa, H. N., Meyer, A., Crumeyrolle, O. & Mutabazi, I.2015Linear stability of a circular Couette flow under a radial thermoelectric body force. Phys. Rev. E91, 033003.
[54] Zaussinger, F., Haun, P., Neben, M., Seelig, T., Travnikov, V., Egbers, C., Yoshikawa, H. & Mutabazi, I.2018Dielectrically driven convection in spherical gap geometry. Phys. Rev. Fluids3, 093501.
[55] Zhakin, A. I.2012Electrohydrodynamics. Phys. Uspekhi55, 465-488.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.