Kalajda, O. F.; Melnychuk, D. V. On some generalization of Frullani and Dirichlet formulas. (Ukrainian) Zbl 0924.26002 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 1997, No. 1, 57-59 (1997). The authors give formulas for the calculation of the following integrals depending on parameters: \(I_{u}(\alpha,\beta)=\int_{a}^{b}[f(\alpha u(x))-f(\beta u(x))]/v(x)dx\) and \(D_{u}(\beta)=\int\limits_{a}^{b}\sin(\beta u(x))/v(x)dx\), where \(f\) is a continuous function; \(u\) is a monotonic continuously-differentiable function; \(u(a)=0, \lim_{x\to b}u(x)=+\infty, v(x)u'(x)=\gamma u(x), \gamma=\text{const}\). Reviewer: A.D.Borisenko (Kyïv) MSC: 26A06 One-variable calculus 26A48 Monotonic functions, generalizations Keywords:generalization; Frullani formula; Dirichlet formula PDF BibTeX XML Cite \textit{O. F. Kalajda} and \textit{D. V. Melnychuk}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 1997, No. 1, 57--59 (1997; Zbl 0924.26002)