×

Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions. (English) Zbl 1388.81375

Summary: We study the renormalization group flow of the velocities in the field theory describing the coupling of the massless quasi-relativistic fermions to the bosons through the Yukawa coupling, as well as with both bosons and fermions coupled to a fluctuating \(U(1)\) gauge field in two and three spatial dimensions. Different versions of this theory describe quantum critical behavior of interacting Dirac fermions in various condensed-matter systems. We perform an analysis using one-loop \(\epsilon\)-expansion about three spatial dimensions, which is the upper critical dimension in the problem. In two dimensions, we find that velocities of both charged fermions and bosons ultimately flow to the velocity of light, independently of the initial conditions, the number of fermionic and bosonic flavors, and the value of the couplings at the critical point. In three dimensions, due to the analyticity of the gauge field propagator, both the \(U(1)\) charge and the velocity of light flow, which leads to a richer behavior than in two dimensions. We show that all three velocities ultimately flow to a common terminal velocity, which is non-universal and different from the original velocity of light. Therefore, emergence of the Lorentz symmetry in the ultimate infrared regime seems to be a rather universal feature of this class of theories in both two and three dimensions.

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V.A. Kostelecky and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys.83 (2011) 11 [arXiv:0801.0287] [INSPIRE]. · doi:10.1103/RevModPhys.83.11
[2] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev.D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
[3] S. Chadha and H.B. Nielsen, Lorentz invariance as a low-energy phenomenon, Nucl. Phys.B 217 (1983) 125 [INSPIRE]. · doi:10.1016/0550-3213(83)90081-0
[4] H.B. Nielsen and M. Ninomiya, β-function in a noncovariant Yang-Mills theory, Nucl. Phys.B 141 (1978) 153 [INSPIRE]. · doi:10.1016/0550-3213(78)90341-3
[5] M.M. Anber and J.F. Donoghue, The emergence of a universal limiting speed, Phys. Rev.D 83 (2011) 105027 [arXiv:1102.0789] [INSPIRE].
[6] G. Bednik, O. Pujolàs and S. Sibiryakov, Emergent Lorentz invariance from strong dynamics: holographic examples, JHEP11 (2013) 064 [arXiv:1305.0011] [INSPIRE]. · doi:10.1007/JHEP11(2013)064
[7] S. Sibiryakov, From scale invariance to Lorentz symmetry, Phys. Rev. Lett.112 (2014) 241602 [arXiv:1403.4742] [INSPIRE]. · doi:10.1103/PhysRevLett.112.241602
[8] I. Kharuk and S. Sibiryakov, Emergent Lorentz invariance with chiral fermions, arXiv:1505.04130 [INSPIRE]. · Zbl 1358.81143
[9] D.J. Lee and I.F. Herbut, Velocity anisotropy and the antiferromagnetic instability in the QED3theory of underdoped cuprates, Phys. Rev.B 66 (2002) 094512 [cond-mat/0201088] [INSPIRE]. · doi:10.1103/PhysRevB.66.094512
[10] O. Vafek, Z. Tešanović and M. Franz, Relativity restored: Dirac anisotropy in QED3, Phys. Rev. Lett.89 (2002) 157003 [cond-mat/0203047] [INSPIRE]. · doi:10.1103/PhysRevLett.89.157003
[11] I.F. Herbut, V. Juričić and B. Roy, Theory of interacting electrons on the honeycomb lattice, Phys. Rev.B 79 (2009) 085116 [arXiv:0811.0610] [INSPIRE]. · doi:10.1103/PhysRevB.79.085116
[12] I.F. Herbut, V. Juričić and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev.B 80 (2009) 075432 [arXiv:0904.1019] [INSPIRE]. · doi:10.1103/PhysRevB.80.075432
[13] B. Roy, V. Juričić and I.F. Herbut, Quantum superconducting criticality in graphene and topological insulators, Phys. Rev.B 87 (2013) 041401(R) [arXiv:1210.3576] [INSPIRE].
[14] S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model, Phys. Rev.B 76 (2007) 075103 [cond-mat/0611658] [INSPIRE]. · doi:10.1103/PhysRevB.76.075103
[15] B. Roy and K. Yang, Bilayer graphene with parallel magnetic field and twisting: phases and phase transitions in a highly tunable Dirac system, Phys. Rev.B 88 (2013) 241107(R) [arXiv:1308.1395] [INSPIRE].
[16] S.-K. Jian, Y.-F. Jiang and H. Yao, Emergent spacetime supersymmetry in 3D Weyl semimetals and 2D Dirac semimetals, Phys. Rev. Lett.114 (2015) 237001 [arXiv:1407.4497] [INSPIRE]. · doi:10.1103/PhysRevLett.114.237001
[17] R. Nandkishore, J. Maciejko, D.A. Huse and S.L. Sondhi, Superconductivity of disordered Dirac fermions, Phys. Rev.B 87 (2013) 174511 [arXiv:1302.5113] [INSPIRE]. · doi:10.1103/PhysRevB.87.174511
[18] B. Roy and S. Das Sarma, Quantum phases of interacting electrons in three-dimensional dirty Dirac semimetals, arXiv:1511.06367 [INSPIRE].
[19] J. Gonzalez, F. Guinea and M.A.H. Vozmediano, Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (a renormalization group approach), Nucl. Phys.B 424 (1994) 595 [hep-th/9311105] [INSPIRE]. · doi:10.1016/0550-3213(94)90410-3
[20] H. Isobe and N. Nagaosa, Theory of quantum critical phenomenon in topological insulator: (3+1)-dimensional quantum electrodynamics in solids, Phys. Rev.B 86 (2012) 165127 [arXiv:1205.2427] [INSPIRE]. · doi:10.1103/PhysRevB.86.165127
[21] G. Arutyunov and S. Frolov, Simplified TBA equations of the AdS5 × S5mirror model, JHEP11 (2009) 019 [arXiv:0907.2647] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/019
[22] P.R.S. Gomes and M. Gomes, On higher spatial derivative field theories, Phys. Rev.D 85 (2012) 085018 [arXiv:1107.6040] [INSPIRE].
[23] B. Seradjeh, J.E. Moore and M. Franz, Exciton condensation and charge fractionalization in a topological insulator film, Phys. Rev. Lett.103 (2009) 066402 [arXiv:0902.1147]. · doi:10.1103/PhysRevLett.103.066402
[24] T. Ohsaku, BCS and generalized BCS superconductivity in relativistic quantum field theory: formulation, Phys. Rev.B 65 (2002) 024512 [cond-mat/0112456] [INSPIRE].
[25] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev.122 (1961) 345 [INSPIRE]. · doi:10.1103/PhysRev.122.345
[26] E.V. Gorbar, V.P. Gusynin and V.A. Miransky, Dynamical chiral symmetry breaking on a brane in reduced QED, Phys. Rev.D 64 (2001) 105028 [hep-ph/0105059] [INSPIRE].
[27] I.F. Herbut and V. Mastropietro, Universal conductivity of graphene in the ultrarelativistic regime, Phys. Rev.B 87 (2013) 205445 [arXiv:1304.1988] [INSPIRE]. · doi:10.1103/PhysRevB.87.205445
[28] I.F. Herbut, Quantum critical points with the Coulomb interaction and the dynamical exponent: when and why z = 1, Phys. Rev. Lett.87 (2001) 137004 [cond-mat/0105544]. · doi:10.1103/PhysRevLett.87.137004
[29] P. Goswami and S. Chakravarty, Quantum criticality between topological and band insulators in (3+1)-dimensions, Phys. Rev. Lett.107 (2011) 196803 [arXiv:1101.2210] [INSPIRE]. · doi:10.1103/PhysRevLett.107.196803
[30] R.E. Throckmorton, J. Hofmann, E. Barnes and S. Das Sarma, Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials, Phys. Rev.B 92 (2015) 115101 [arXiv:1505.05154]. · doi:10.1103/PhysRevB.92.115101
[31] J. González, Phase diagram of the quantum electrodynamics of two-dimensional and three-dimensional Dirac semimetals, Phys. Rev.B 92 (2015) 125115 [arXiv:1502.07640] [INSPIRE]. · doi:10.1103/PhysRevB.92.125115
[32] B. Roy, Multi-critical behavior of Z2 × O(2) Gross-Neveu-Yukawa theory in graphene, Phys. Rev.B 84 (2011) 113404 [arXiv:1106.1419] [INSPIRE]. · doi:10.1103/PhysRevB.84.113404
[33] B. Roy and V. Juričić, Strain-induced time-reversal odd superconductivity in graphene, Phys. Rev.B 90 (2014) 041413(R) [arXiv:1309.0507] [INSPIRE].
[34] L. Classen, I.F. Herbut, L. Janssen and M.M. Scherer, Mott multicriticality of Dirac electrons in graphene, Phys. Rev.B 92 (2015) 035429 [arXiv:1503.05002] [INSPIRE]. · doi:10.1103/PhysRevB.92.035429
[35] M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: a review, Phys. Rept.385 (2003) 69 [hep-th/0306133] [INSPIRE]. · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.