×

Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field. (English) Zbl 1430.76495

Summary: Numerical simulations of quasi-static magnetoconvection with a vertical magnetic field are carried out up to a Chandrasekhar number of \(Q=10^8\) over a broad range of Rayleigh numbers \(Ra\). Three magnetoconvection regimes are identified: two of the regimes are magnetically constrained in the sense that a leading-order balance exists between the Lorentz and buoyancy forces, whereas the third regime is characterized by unbalanced dynamics that is similar to non-magnetic convection. Each regime is distinguished by flow morphology, momentum and heat equation balances, and heat transport behaviour. One of the magnetically constrained regimes appears to represent an “ultimate” magnetoconvection regime in the dual limit of asymptotically large buoyancy forcing and magnetic field strength; this regime is characterized by an interconnected network of anisotropic, spatially localized fluid columns aligned with the direction of the imposed magnetic field that remain quasi-laminar despite having large flow speeds. As for non-magnetic convection, heat transport is controlled primarily by the thermal boundary layer. Empirically, the scaling of the heat transport and flow speeds with \(Ra\) appear to be independent of the thermal Prandtl number within the magnetically constrained, high-\(Q\) regimes.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76R05 Forced convection
76E06 Convection in hydrodynamic stability
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Ahlers, G., Grossmann, S. & Lohse, D.2009Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys.81 (2), 503-537.10.1103/RevModPhys.81.503
[2] Aubert, J., Gastine, T. & Fournier, A.2017Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech.813, 558-593.10.1017/jfm.2016.789 · Zbl 1383.76538
[3] Aurnou, J. M. & Olson, P.2001Experiments on Rayleigh-Bénard convection, magnetoconvection, and rotating magnetoconvection in liquid gallium. J. Fluid Mech.430, 283-307.10.1017/S0022112000002950 · Zbl 0963.76511
[4] Bhattacharjee, J. K., Das, A. & Banerjee, K.1991Turbulent Rayleigh-Bénard convection in a conducting fluid in a strong magnetic field. Phys. Rev. A43 (2), 1097-1099.10.1103/PhysRevA.43.1097
[5] Bhattacharyya, S. N.2006Scaling in magnetohydrodynamic convection at high Rayleigh number. Phys. Rev. E74 (3), 035301.
[6] Burr, U. & Müller, U.2001Rayleigh-Bénard in liquid metal layers under the influence of a vertical magnetic field. Phys. Fluids13, 3247-3257.10.1063/1.1404385 · Zbl 1184.76075
[7] Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X., Zaleski, S. & Zanetti, G.1989Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech.204, 1-30.10.1017/S0022112089001643
[8] Cattaneo, F., Emonet, T. & Weiss, N.2003On the interaction between convection and magnetic fields. Astrophys. J.588 (2), 1183-1198.10.1086/374313
[9] Chandrasekhar, S.1961Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
[10] Chillà, F. & Schumacher, J.2012New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E35 (7), 58.
[11] Cioni, S., Chaumat, S. & Sommeria, J.2000Effect of a vertical magnetic field on turbulent Rayleigh-Bénard convection. Phys. Rev. E62 (4), R4520.
[12] Clyne, J., Mininni, P., Norton, A. & Rast, M.2007Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys.9 (8), 301.10.1088/1367-2630/9/8/301
[13] Clyne, J. & Rast, M.2005A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In Electronic Imaging 2005, pp. 284-294. International Society for Optics and Photonics.
[14] Davidson, P. A.2013Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.10.1017/CBO9781139208673 · Zbl 1282.76001
[15] Favier, B., Silvers, L. J. & Proctor, M. R. E.2014Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids26, 096605.10.1063/1.4895131 · Zbl 1323.76106
[16] French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J. & Redmer, R.2012Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser.202 (1), 5.10.1088/0067-0049/202/1/5
[17] Gillet, N., Brito, D., Jault, D. & Nataf, H.-C.2007Experimental and numerical studies of magnetoconvection in a rapidly rotating spherical shell. J. Fluid Mech.580, 123-143.10.1017/S0022112007005289 · Zbl 1113.76003
[18] Gillet, N., Jault, D., Canet, E. & Fournier, A.2010Fast torsional waves and strong magnetic field within the Earth’s core. Nature465, 74-77.10.1038/nature09010
[19] Grossmann, S. & Lohse, D.2000Scaling in thermal convection: a unifying theory. J. Fluid Mech.407, 27-56.10.1017/S0022112099007545 · Zbl 0972.76045
[20] Guervilly, C., Hughes, D. W. & Jones, C. A.2014Large-scale vortices in rapidly rotating Rayleigh-Bénard convection. J. Fluid Mech.758, 407-435.10.1017/jfm.2014.542
[21] Jones, C. A.2011Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech.43, 583-614.10.1146/annurev-fluid-122109-160727 · Zbl 1299.86026
[22] Jones, C. A. & Roberts, P. H.2000Convection-driven dynamos in a rotating plane layer. J. Fluid Mech.404, 311-343.10.1017/S0022112099007363 · Zbl 0959.76093
[23] Julien, K., Knobloch, E. & Tobias, S. M.1999Strongly nonlinear magnetoconvection in three dimensions. Physica D128, 105-129. · Zbl 0944.76095
[24] Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E.2012Statistical and physical balances in low Rossby number Rayleigh-Bénard convection. Geophys. Astrophys. Fluid Dyn.106 (4-5), 392-428.10.1080/03091929.2012.696109 · Zbl 07649676
[25] King, E. M. & Aurnou, J. M.2013Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA110, 6688-6693.10.1073/pnas.1217553110
[26] King, E. M. & Aurnou, J. M.2015Magnetostrophic balance as the optimal state for turbulent magnetoconvection. Proc. Natl Acad. Sci. USA112 (4), 990-994.10.1073/pnas.1417741112
[27] Kraichnan, R. H.1962Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids5 (11), 1374-1389.10.1063/1.1706533 · Zbl 0116.42803
[28] Lepot, S., Aumaître, S. & Gallet, B.2018Radiative heating achieves the ultimate regime of thermal convection. Proc. Natl Acad. Sci. USA115, 201806823.10.1073/pnas.1806823115 · Zbl 1416.76300
[29] Lim, Z. L., Chong, K. L., Ding, G. & Xia, K.2019Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing. J. Fluid Mech.870, 519-542.10.1017/jfm.2019.232 · Zbl 1419.76587
[30] Liu, W., Krasnov, D. & Schumacher, J.2018Wall modes in magnetoconvection at high Hartmann numbers. J. Fluid Mech.849, R2.10.1017/jfm.2018.479 · Zbl 1415.76315
[31] Lohse, D. & Toschi, F.2003Ultimate state of thermal convection. Phys. Rev. Lett.90 (3), 034502.10.1103/PhysRevLett.90.034502 · Zbl 1063.76651
[32] Lohse, D. & Xia, K.2010Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech.42, 335-364.10.1146/annurev.fluid.010908.165152 · Zbl 1345.76038
[33] Malkus, W. V.1954The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A225 (1161), 196-212. · Zbl 0058.20203
[34] Marti, P., Calkins, M. A. & Julien, K.2016A computationally efficient spectral method for modeling core dynamics. Geochem. Geophys. Geosyst.17 (8), 3031-3053.10.1002/2016GC006438
[35] Matthews, P. C.1999Asymptotic solutions for nonlinear magnetoconvection. J. Fluid Mech.387, 397-409.10.1017/S0022112099004966 · Zbl 0932.76095
[36] Miesch, M. S.2005Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys.2, 1.10.12942/lrsp-2005-1
[37] Moffatt, H. K.1970Turbulent dynamo action at low magnetic Reynolds number. J. Fluid Mech.41, 435-452.10.1017/S002211207000068X · Zbl 0191.25904
[38] Ossendrijver, M.2003The solar dynamo. Astron. Astrophys. Rev.11 (4), 287-367.10.1007/s00159-003-0019-3 · Zbl 1064.37508
[39] Pozzo, M., Davies, C. J., Gubbins, D. & Alfé, D.2013Transport properties for liquid silicon – oxygen – iron mixtures at Earth’s core conditions. Phys. Rev. B87, 014110.10.1103/PhysRevB.87.014110
[40] Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B.2014Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett.112, 144501.10.1103/PhysRevLett.112.144501
[41] Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A.2017 Geodynamo simulations with vigorous convection and low viscosity. arXiv:1701.01299.
[42] Spalart, P. R., Moser, R. D. & Rogers, M. M.1991Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys.96, 297-324.10.1016/0021-9991(91)90238-G · Zbl 0726.76074
[43] Sprague, M., Julien, K., Knobloch, E. & Werne, J.2006Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech.551, 141-174.10.1017/S0022112005008499 · Zbl 1119.76057
[44] Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M.2014Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett.113, 254501.10.1103/PhysRevLett.113.254501
[45] Tao, L., Weiss, N. O., Brownjohn, D. P. & Proctor, M. R. E.1998Flux separation in stellar magnetoconvection. Astrophys. J. Lett.496 (1), L39.10.1086/311240
[46] Vogt, T., Horn, S., Grannan, A. M. & Aurnou, J. M.2018aJump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. USA115 (50), 12674-12679.10.1073/pnas.1812260115 · Zbl 1404.76283
[47] Vogt, T., Ishimi, W., Yanagisawa, T., Tasaka, Y., Sakuraba, A. & Eckert, S.2018bTransition between quasi-two-dimensional and three-dimensional Rayleigh-Bénard convection in a horizontal magnetic field. Phys. Rev. Fluids3 (1), 013503.10.1103/PhysRevFluids.3.013503
[48] Yadav, R. K., Gastine, T. & Christensen, U. R.2016Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. USA113 (43), 12065-12070.10.1073/pnas.1608998113 · Zbl 1355.86007
[49] Yanagisawa, T., Yamagishi, Y., Hamano, Y., Tasaka, Y., Yoshida, M., Yano, K. & Takeda, Y.2010Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium. Phys. Rev. E82, 016320.
[50] Yu, X., Zhang, J. & Ni, M.2018Numerical simulation of the Rayleigh-Bénard convection under the influence of magnetic fields. Intl J. Heat Mass Transfer120, 1118-1131.10.1016/j.ijheatmasstransfer.2017.11.151
[51] Zhu, X., Mathai, V., Stevens, R. J., Verzicco, R. & Lohse, D.2018Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection. Phys. Rev. Lett.120 (14), 144502.10.1103/PhysRevLett.120.144502
[52] Zürner, T., Liu, W., Krasnov, D. & Schumacher, J.2016Heat and momentum transfer for magnetoconvection in a vertical external magnetic field. Phys. Rev. E94 (4), 043108.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.