×

zbMATH — the first resource for mathematics

Spectral statistics of the uni-modular ensemble. (English) Zbl 1407.60009

MSC:
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson G W, Guionnet A and Zeitouni O 2009 An Introduction to Random Matrices(Cambridge Studies in Advanced Mathematics vol 118) (Cambridge: Cambridge University Press)
[2] Wigner E P 1955 Characteristic vectors of bordered matrices with infinite dimensions Ann. Math.62 548-64
[3] Wigner E P 1958 On the distribution of the roots of certain symmetric matrices Ann. Math.67 325-8
[4] Sodin S 2007 Random matrices, nonbacktracking walks, and orthogonal polynomials J. Math. Phys.48 123503
[5] Feldheim O N and Sodin S 2010 A universality result for the smallest eigenvalues of certain sample covariance matrices Geom. Funct. Anal.20 88-123
[6] Sodin S 2016 Fluctuations of interlacing sequences J Math. Phys. Anal. Geom. (arxiv:1610.02690) in press
[7] Lakshminarayan A, Puchala Z and Zyczkowski K 2014 Diagonal unitary entangling gates and contradiagonal quantum states Phys. Rev. A 90 032303
[8] Dyson F J 1962 A Brownian motion model for the eigenvalues of a random matrix J. Math. Phys.3 1191-8
[9] Meckes E 2009 On Stein’s Method for Multivariate Normal Approximation(Collections vol 5) (Beachwood, OH: Institute of Mathematical Statistics) pp 153-78
[10] Harer J and Zagier D 1986 The Euler characteristic of the moduli space of curves Invent. Math.85 457-85
[11] Ledoux M 2009 A recursion formula for the moments of the gaussian orthogonal ensemble Ann. Inst. Henri Poincare45 754-69
[12] Witte N S and Forrester P J 2014 Moments of the Gaussian β-ensembles and the large-N expansion of the densities J. Math. Phys.55 083302
[13] Mezzadri F, Reynolds A and Winn B 2017 Moments of the eigenvalue densities and of the secular coefficients of β-ensembles Nonlinearity30 1034
[14] Mezzadri F and Simm N J 2011 Moments of the transmission eigenvalues, proper delay times and random matrix theory I and II J. Math. Phys.52 103511
[15] Mezzadri F and Simm N J 2012 Moments of the transmission eigenvalues, proper delay times and random matrix theory I and II J. Math. Phys.53 053504
[16] Mezzadri F and Simm N J 2013 Tau-function theory of Chaotic quantum transport with β = 1, 2, 4 Commun. Math. Phys.324 465-513
[17] Cunden F, Mezzadri F, Simm N and Vivo P 2016 Large-N expansion for the time-delay matrix of ballistic chaotic cavities J. Math. Phys.57 111901
[18] Girko V L 1989 Asymptotics of the distribution of the spectrum of random matrices Russian Mathematical Surveys vol 44 (London: Turpion) pp 3-36
[19] Pastur L A and Shcherbina M 2011 Eigenvalue Distribution of Large Random Matrices vol 171 (Providence, RI: American Mathematical Society)
[20] Jonsson D 1982 Some limit theorems for the eigenvalues of a sample covariance matrix J. Multivariate Anal.12 1-38
[21] Johansson K 1998 On fluctuations of eigenvalues of random Hermitian matrices Duke Math. J.91 151-204
[22] Khorunzhy A M, Khoruzhenko B A and Pastur L A 1996 Asymptotic properties of large random matrices with independent entries J. Math. Phys.37 5033-60
[23] Sinai Y and Soshnikov A 1998 Central limit theorem for traces of large random matrices with independent matrix elements Bull. Braz. Math. Soc.29 1-24
[24] Chatterjee S 2007 Fluctuations of eigenvalues and second order Poincaré inequalities Probab. Theory Relat. Fields143 1-40
[25] Cabanal-Duvillard T 2001 Fluctuations de la loi empirique deagrandes matrices aléatoires Ann. Inst. Henri Poincare B 37 373-402
[26] Pastur L A 1972 On the spectrum of random matrices Theor. Math. Phys.10 102-12
[27] Efetov K B 1983 Supersymmetry and theory of disordered metals Adv. Phys.32 53
[28] Verbaarschot J J M, Weidenm H A and Zirnbauer M R 1985 Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering Phys. Rep.129.6 367-438
[29] Pluhar Z and Weidenmüller H A 2015 Quantum graphs and random-matrix theory J. Phys. A: Math. Theor.48 275102
[30] Zirnbauer M R 1996 Supersymmetry for systems with unitary disorder: circular ensembles J. Phys. A: Math. Gen.29 7113
[31] Gnutzmann S and Altland A 2004 Universal spectral statistics in quantum graphs Phys. Rev. Lett.93 194101
[32] Gnutzmann S and Altland A 2005 Spectral correlations of individual quantum graphs Phys. Rev. E 72 056215
[33] Kalisch F and Braak D 2002 Exact density of states for finite Gaussian random matrix ensembles via supersymmetry J. Phys. A: Math. Gen.35 9957
[34] Shamis M 2013 Density of states for Gaussian unitary ensemble, Gaussian orthogonal ensemble and interpolating ensembles through supersymmetric approach J. Math. Phys.54 113505
[35] Mehta M L 2004 Random Matrices vol 142 (New York: Academic)
[36] Oren I, Godel A and Smilansky U 2009 Trace formulae and spectral statistics for discrete Laplacians on regular graphs (I) J. Phys. A: Math. Theor.42 415101
[37] Oren I and Smilansky U 2010 Trace formulae and spectral statistics for discrete Laplacians on regular graphs (II) J. Phys. A: Math. Theor.43 225205
[38] Maciążek T, Joyner C H and Smilansky U 2015 The probability distribution of spectral moments for the Gaussian β-ensembles Acta Phys. Pol. A 128 12
[39] Sosoe P and Wong P 2013 Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices Adv. Math.249 37-87
[40] Joyner C H and Smilansky U 2015 Spectral statistics of Bernoulli matrix ensembles-a random walk approach (I) J. Phys. A: Math. Theor.48 255101
[41] Stein C 1972 A bound for the error in the normal approximation to the distribution of a sum of dependent random variables Proceedings of the 6th Berkeley Symp. on Mathematical Statistics and Probability(Probability Theory vol 2) (Berkeley, CA: University of California Press) pp 583-602
[42] Kusalik T, Mingo J and Speicher R 2007 Orthogonal polynomials and fluctuations of random matrices J. Reine Angew. Math.604 1-46
[43] Schenker J and Schulz-Baldes H 2007 Gaussian fluctuations for random matrices with correlated entries Int. Math. Res. Not.15 rnm047
[44] Risken H 1989 The Fokker-Planck Equation Methods of Solution and Applications(Springer Series in Synergetics vol 18) 2nd edn (Berlin: Springer)
[45] Gardiner C 2009 Stochastic methods A Handbook for the Natural and Social Sciences(Springer Series in Synergetics) 4th edn (Berlin: Springer)
[46] Döbler C and Stolz M 2011 Stein’s method and the multivariate CLT for traces of powers on the compact classical groups Electron. J. Probab.16 2375-405
[47] Webb C 2015 Linear statistics of the circular β-ensemble, Stein’s method and circular Dyson Brownian motion (arxiv:1507.08670)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.