×

zbMATH — the first resource for mathematics

Isospectral discrete and quantum graphs with the same flip counts and nodal counts. (English) Zbl 1394.81131
MSC:
81Q50 Quantum chaos
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
35P05 General topics in linear spectral theory for PDEs
58J53 Isospectrality
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Band, R.; Shapira, T.; Smilansky, U., Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39, 13999-14014, (2006) · Zbl 1111.58027
[2] Band, R.; Smilansky, U., Resolving the isospectrality of the dihedral graphs by counting nodal domains, Eur. Phys. J. Spec. Top., 145, 171-179, (2007)
[3] Ammann, K., (2015)
[4] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol I, (1953), New York: Interscience, New York · Zbl 0729.00007
[5] Gnutzmann, S.; Smilansky, U., Complex patterns in wave functions: drums, graphs and disorder, Phil. Trans. R. Soc. A, 372, 20130264, (2013) · Zbl 1321.00093
[6] Blum, G.; Gnutzmann, S.; Smilansky, U., Nodal domains statistics: a criterion for quantum chaos, Phys. Rev. Lett., 88, (2002)
[7] Kac, M., Can one hear the shape of a drum?, Am. Math. Mon., 73, 1, (1966) · Zbl 0139.05603
[8] Gordon, C.; Webb, D. L.; Wolpert, S., One cannot hear the shape of a drum, Bull. Am. Math. Soc., 27, 134-138, (1992) · Zbl 0756.58049
[9] Gnutzmann, S.; Smilansky, U.; Sondergaard, N., Resolving isospectral drums by counting nodal domains, J. Phys. A: Math. Gen., 38, 8921-8933, (2005) · Zbl 1082.58032
[10] Gnutzmann, S.; Karageorge, P.; Smilansky, U., Can one count the shape of a drum?, Phys. Rev. Lett., 97, (2006) · Zbl 1228.58019
[11] Brüning, J.; Fajman, D., On the nodal count for flat tori, Commun. Math. Phys., 313, 791-813, (2012) · Zbl 1252.58014
[12] Karageorge, P. D.; Smilansky, U., Counting nodal domains on surfaces of revolution, J. Phys. A: Math. Theor., 41, (2008) · Zbl 1139.81058
[13] Berkolaiko, G., A lower bound for nodal count on discrete and metric graphs, Commun. Math. Phys., 278, 803-819, (2008) · Zbl 1171.05356
[14] Davies, E. B.; Gladwell, G. M L.; Leydold, J.; Stadler, P. F., Discrete nodal domain theorems, Linear Algebr. Appl., 336, 51-60, (2001) · Zbl 0990.05093
[15] Berkolaiko, G.; Raz, H.; Smilansky, U., Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count, J. Phys. A: Math. Theor., 45, (2012) · Zbl 1242.05159
[16] Band, R.; Berkolaiko, G.; Raz, H.; Smilansky, U., The number of nodal domains on quantum graphs as a stability index of graph partitions, Commun. Math. Phys., 311, 815-838, (2012) · Zbl 1244.81026
[17] Berkolaiko, G., Nodal count of graph eigenfunctions via magnetic perturbation, Anal. PDE, 6, 1213-1233, (2013) · Zbl 1281.35089
[18] Colin de Verdi, Y., Magnetic interpretation of the nodal defect on graphs, Anal. PDE, 6, 1235-1242, (2013) · Zbl 1281.35090
[19] Berkolaiko, G.; Kuchment, P.; Smilansky, U., Critical partitions and nodal deficiency of billiard eigenfunctions, Geom. Funct. Anal., 22, 1517-1540, (2012) · Zbl 1308.35152
[20] Bogomolny, E.; Schmit, C., Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., 88, (2002)
[21] Dekel, Y.; Lee, J. R.; Charikar, M., Eigenvectors of random graphs: nodal domains, Approximation, Randomization, and Combinatorial Optimization, vol 4627, 436-448, (2007), Berlin: Springer, Berlin · Zbl 1171.05418
[22] Elon, Y., Eigenvectors of the discrete laplacian on regular graphsa statistical approach, J. Phys. A: Math. Theor., 41, (2008) · Zbl 1157.39314
[23] Band, R.; Oren, I.; Smilansky, U., Nodal domains on graphs—how to count them and why?, 77, 5-28, (2008) · Zbl 1194.05078
[24] Buser, P.; Conway, J.; Doyle, P.; Semmler, K-D, Some planar isospectral domains, Int. Math. Res. Not., 1994, 391, (1994) · Zbl 0837.58033
[25] Chapman, S. J., Drums that sound the same, Am. Math. Mon., 102, 124-138, (1995) · Zbl 0849.35084
[26] Okada, Y.; Shudo, A., Equivalence between isospectrality and isolength spectrality for a certain class of planar billiard domains, J. Phys. A: Math. Gen., 34, 5911, (2001) · Zbl 0986.58017
[27] Jakobson, D.; Levitin, M.; Nadirashvili, N.; Polterovich, I., Spectral problems with mixed dirichletneumann boundary conditions: isospectrality and beyond, J. Comput. Appl. Math., 194, 141-155, (2006) · Zbl 1121.58027
[28] Sunada, T., Riemannian coverings and isospectral manifolds, Ann. Math., 121, 169-186, (1985) · Zbl 0585.58047
[29] Gutkin, B.; Smilansky, U., Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 34, 6061, (2001) · Zbl 0981.05095
[30] Oren, I.; Band, R., Isospectral graphs with identical nodal counts, J. Phys. A: Math. Theor., 45, (2012) · Zbl 1237.05128
[31] Godsil, C. D.; McKay, B. D., Constructing cospectral graphs, Aequationes Math., 25, 257-268, (1982) · Zbl 0527.05051
[32] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs, (2013), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1318.81005
[33] Gnutzmann, S.; Smilansky, U., Quantum graphs: applications to quantum chaos and universal spectral statistics, Adv. Phys., 55, 527-625, (2006)
[34] Kostrykin, V.; Schrader, R., Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen., 32, 595-630, (1999) · Zbl 0928.34066
[35] Band, R., The nodal count 0, 1, 2, 3, ... implies the graph is a tree, Phil. Trans. R. Soc. A, 372, 20120504, (2013) · Zbl 1352.34019
[36] Gnutzman, S.; Smilansky, U.; Weber, J., Nodal counting on quantum graphs, Waves Random Media, 14, S61-S73, (2003) · Zbl 1063.81056
[37] Oren, I., (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.