zbMATH — the first resource for mathematics

Primitivity in skew Laurent polynomial rings and related rings. (English) Zbl 0797.16037
Necessary and sufficient conditions for the primitivity of a skew Laurent polynomial ring over a commutative Noetherian ring are given, with explicit constructions of simple faithful modules. In two papers [Glasg. Math. J. 18, 93-97 (1977; Zbl 0347.16020) and ibid. 19, 79-85 (1978; Zbl 0374.16004)], the author gave sufficient conditions for primitivity of formal differential operator rings and skew Laurent polynomial rings, respectively. For formal differential operator rings over commutative Noetherian rings, these conditions were shown to be necessary by K. R. Goodearl and R. B. Warfield jun. [Math. Z. 180, 503-523 (1982; Zbl 0495.16002)]. The results in the present paper are analogous to those obtained by Goodearl and Warfield although the conditions given in the second paper cited above are not necessary.
Necessary and sufficient conditions for primitivity are also given for a related class of rings. A ring in this class is a factor ring of an iterated skew polynomial ring in two indeterminates and, subject to a regularity condition, has two localizations which are skew Laurent polynomial rings. The main examples are the non-Artinian primitive factor rings of both the universal enveloping algebra and the quantum enveloping algebra of the Lie algebra \(\text{sl}(2,\mathbb{C})\).

16S36 Ordinary and skew polynomial rings and semigroup rings
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16S32 Rings of differential operators (associative algebraic aspects)
16S34 Group rings
16W20 Automorphisms and endomorphisms
Full Text: DOI EuDML
[1] Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. J. Ergodic Theory Dyn. Syst.9, 67–99 (1989) · Zbl 0651.58027
[2] Goldie, A.W., Michler, G.O.: Ore extensions and polycyclic group rings. J. Lond. Math. Soc., II. Ser.9, 337–345 (1974) · Zbl 0294.16019 · doi:10.1112/jlms/s2-9.2.337
[3] Goodearl, K.R., Warfield, R.B. Jr.: Primitivity in differential operator rings. Math. Z.180, 503–523 (1982) · Zbl 0495.16002 · doi:10.1007/BF01214722
[4] Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd ed. New York: Addison-Wesley 1989 · Zbl 0695.58002
[5] Jordan, D.A.: Primitive Ore extensions. Glasg. Math. J.18, 93–97 (1977) · Zbl 0347.16020 · doi:10.1017/S0017089500003086
[6] Jordan, D.A.: Primitive skew Laurent polynomial rings. Glasg. Math. J.19, 79–85 (1978) · Zbl 0374.16004 · doi:10.1017/S0017089500003414
[7] Jordan, D.A.: Simple skew Laurent polynomial rings. Commun. Algebra15, 135–137 (1984) · Zbl 0534.16001 · doi:10.1080/00927878408822995
[8] Jordan, D.A.: Iterated skew polynomial rings and quantum groups. J. Algebra156, 194–218 (1993) · Zbl 0809.16032 · doi:10.1006/jabr.1993.1070
[9] Jordan, D.A.: Krull and global dimension of certain iterated skew polynomial rings. In: Abelian Groups and Noncommutative Rings, a Collection of Papers in Memory of Robert B. Warfield, Jr., Contemp. Math., Am. Math. Soc.130, 201–213 (1992)
[10] Joseph, A.: A generalization of Quillen’s lemma and its application to the Weyl algebras. Isr. J. Math.28, 177–192 (1977) · Zbl 0366.17006 · doi:10.1007/BF02759808
[11] Lane, D.R.: PhD thesis, University of London (1976)
[12] Lorenz, M.: Primitive ideals of group algebras of supersoluble groups. Math. Ann.225, 115–122 (1977) · Zbl 0341.16003 · doi:10.1007/BF01351715
[13] Matsumura, H.: Commutative ring theory. (Camb. Stud. Adv. Math. Vol. 8) Cambridge: Cambridge University Press 1986 · Zbl 0603.13001
[14] McConnell, J.C., Robson J.C.: Noncommutative Noetherian rings. Chichester: Wiley 1987 · Zbl 0644.16008
[15] McConnell, J.C., Pettit, J.J.: Crossed products and multiplicative analogues of the Weyl algebras. J. Lond. Math. Soc., II. Ser.38, 47–55 (1988) · Zbl 0652.16007 · doi:10.1112/jlms/s2-38.1.47
[16] Ribenboim, P.: The book of prime number records. Berlin Heidelberg New York: Springer, 1988 · Zbl 0642.10001
[17] Rowen, L.: Primitive ideals of algebras over uncountable fields. In: Malliavin, M.-P. (ed.) Séminaire d’Algèbre P. Dubreil et M.-P. Malliavin. (Lect. Notes Math., vol. 1404, pp. 322–345) Berlin Heidelberg New York: Springer 1989 · Zbl 0687.16005
[18] Sharp, R.Y., Vàmos, P.: Baire’s category theorem and prime avoidance in complete local rings. Arch. Math.44, 243–248 (1984) · Zbl 0546.13002 · doi:10.1007/BF01237858
[19] Smith, M.K.: Eigenvectors of automorphisms of polynomial rings in two variables. Houston J. Math.10, 559–573 (1984) · Zbl 0573.13010
[20] Smith, S.P.: A class of algebras similar to the enveloping algebra ofsl(2). Trans. Am. Math. Soc.322, 285–314 (1990) · Zbl 0732.16019 · doi:10.2307/2001532
[21] Smith, S.P.: Quantum groups. An introduction and survey for ring theorists In: Noncommutative Rings, MSRI Pub 24. Berlin Heidelberg New York: Springer 1992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.