×

High performance analysis of liquid sloshing in horizontal circular tanks with internal body by using IGA-SBFEM. (English) Zbl 1464.76116

Summary: An isogeometric scaled boundary finite element method (IGA-SBFEM) using the non-uniform rational B-splines (NURBS) is firstly performed to investigate the liquid sloshing in the half-full horizontal circular cylindrical with the internal bodies. The proposed method can effectively maintain the advantages of the SBFEM, which combines the advantages of the finite element method and the boundary element method with its own unique characteristics, with the analytical solutions in the radial direction, and also can accurately improve the description of geometry on the boundary by using the NURBS, which brings out the flexibility to describe the complex geometry and presents some key improvements compared to the traditional SBFEM. The detailed derivation and solutions for the sloshing problems based on IGA-SBFEM, and the sloshing frequencies and the corresponding mode shapes and the dynamic sloshing characteristics are also presented by combining the multimodal method. The numerical results validate that this proposed method can acquire higher accuracy, efficiency and convergence with significantly fewer degrees of freedom than those of the traditional SBFEM, and the total number of degrees of freedom of IGA-SBFEM and SBFEM is far less than those of FEM which should be discretized in the entire domain. A detailed parametric study for estimating the influences of the key parameters involving the arrangement, shape, number and size of the internal bodies on the natural sloshing frequencies, mode shapes and sloshing forces and some interesting conclusions have been obtained.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ibrahim, R. A., Liquid sloshing dynamics (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1103.76002
[2] Abramson, H.n., Slosh suppression (1969), NASA, Technical Report SP-8031
[3] Evans, D. V.; McIver, P., Resonant frequencies in a container with a vertical baffle, J Fluid Mech, 175, 295-307 (1987) · Zbl 0612.76018
[4] Gedikli, A.; Erguven, M. E., Seismic analysis of a liquid storage tank with a baffle, J Sound Vib, 223, 1, 141-155 (1999)
[5] Cho, J. R.; Lee, H. W.; Kim, K. W., Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation, J Sound Vib, 258, 847-866 (2002)
[6] Gavrilyuk, I.; Lukovsky, I.; Trotsenko, Yu.; Timokha, A., Sloshing in a vertical circular cylindrical tank with an annular baffle. Part1: linear fundamental solutions, J Eng Math, 54, 71-88 (2006) · Zbl 1101.76008
[7] Akyildiz, H.; Unal, E., Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing, Ocean Eng, 32, 1503-1516 (2005)
[8] Younes, M. F.; Younes, Y. K.; El-Madah, M.; Ibrahim, I. M.; El-Dannanh, E. H., An experimental investigation of hydrodynamic damping due to vertical baffle arrangements in a rectangular tank, Proc Inst Mech Eng Part M: J Eng Mar Environ, 221, 115-123 (2007)
[9] Biswal, K. C.; Bhattacharyya, S. K.; Sinha, P. K., Dynamic response analysis of a liquid-filled cylindrical tank with annular baffle, J Sound Vib, 274, 1-2, 13-37 (2004)
[10] Firouz-Abadi, R. D.; Haddadpour, H.; Noorian, M. A.; Ghasemi, M., A 3D BEM model for liquid sloshing in baffled tanks, Int J Numer Methods Eng, 76, 9, 1419-1433 (2008) · Zbl 1195.76281
[11] Liu, D.; Lin, P., Three-dimensional liquid sloshing in a tank with baffles, Ocean Eng, 36, 202-212 (2009)
[12] Yan, G.; Rakheja, S.; Siddiqui, K., Experimental study of liquid slosh dynamics in a partially-filled tank, J Fluids Eng, 131, 7, Article 071303 pp. (2009)
[13] Pal, P.; Bhattacharyya, S. K., Sloshing in partially filled liquid containers- numerical and experimental study for 2-D problems, J Sound Vib, 329, 4466-4485 (2010)
[14] Xue, M. A.; Lin, P., Numerical study of ring baffle effects on reducing violent liquid sloshing, Comput Fluids, 52, 1, 116-129 (2011) · Zbl 1271.76259
[15] Hasheminejad, S. M.; Aghabeigi, M., Transient sloshing in half-full horizontal elliptical tanks under lateral excitation, J Sound Vib, 330, 14, 3507-3525 (2011)
[16] Hasheminejad, S. M.; Mohammadi, M. M.; Jarrahi, M., Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles, J Fluids Struct, 44, 97-114 (2014)
[17] Noorian, M. A.; Firouz-Abadi, R. D.; Haddadpour, H., A reduced order model for liquid sloshing in tanks with flexible baffles using boundary element method, Int J Numer Methods Eng, 89, 13, 1652-1664 (2012) · Zbl 1242.76193
[18] Hwang, S. C.; Park, J. C.; Gotoh, H.; Khayyer, A.; Kang, K. J., Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method, Ocean Eng, 118, 227-241 (2016)
[19] Xue, M. A.; Zheng, J.; Lin, P., Numerical simulation of sloshing phenomena in cubic tank with multiple baffles, J Appl Math, 2012, Article 245702 pp. (2012) · Zbl 1251.76045
[20] Wu, C. H.; Faltinsen, O. M.; Chen, B. F., Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method, Comput Fluids, 63, 9-26 (2012) · Zbl 1365.76205
[21] Koh, C. G.; Luo, M.; Gao, M.; Bai, W., Modelling of liquid sloshing with constrained floating baffle, Comput Struct, 122, 270-279 (2013)
[22] Shao, J. R.; Li, Z. R.; Liu, M. B., A comparative study of different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation, Eng Comput, 32, 4, 1172-1190 (2015)
[23] Cho, I. H.; Choi, J. S.; Kim, M. H., Sloshing reduction in a swaying rectangular tank by a horizontal porous baffle, Ocean Eng, 138, 23-34 (2017)
[24] Wei, Z. J.; Odd, M. F.; Claudio, L.; Yue, Q. J., Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions, Phys Fluids, 27, 3, 1-24 (2015), 032104
[25] Sanapala, V. S.; Rajkumar, M.; Velusamy, K.; Patnaik, B. S.V., Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container, J Fluids Struct, 76, 229-250 (2018)
[26] Pan, K.; Li, X.; Fan, Y.; Cui, N., The design of the floating baffle for Cassini tank and the analysis of restraining sloshing, Proc Inst Mech Eng Part G J Aerosp Eng, 232, 3, 448-458 (2018)
[27] Choun, Y. S.; Yun, C. B., Sloshing characteristics in rectangular tanks with a submerged block, Comput Struct, 61, 3, 401-413 (1996)
[28] Mitra, S.; Sinhamahapatra, K. P., Slosh dynamics of liquid-filled containers with submerged components using pressure-based finite element method, J Sound Vib, 304, 1-2, 361-381 (2007)
[29] Mitra, S.; Khoo, B. C.; Kumar, A.; Sinhamahapatra, K. P., Influence of various internal components on slosh dynamics: a study using finite element method, Int J Fluid Mech Res, 37, 4, 359-381 (2010)
[30] Askari, E.; Daneshmand, F.; Amabili, M., Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves, J Fluids Struct, 27, 7, 1049-1067 (2011)
[31] Hasheminejad, S. M.; Soleimani, H., Linear solution for liquid sloshing in an upright elliptical cylindrical container with an eccentric core barrel, J Eng Mech, 143, 9, Article 04017105 pp. (2017)
[32] Song, C. M.; Wolf, J. P., The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput Methods Appl Mech Eng, 147, 329-355 (1997) · Zbl 0897.73069
[33] Wolf, J. P.; Song, C. M., The scaled boundary finite element method (2003), Wiley Press: Wiley Press Chichester, England
[34] Song, C. M.; Wolf, J. P., Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method, Comput Struct, 80, 183-197 (2002)
[35] Lin, G.; Liu, J.; Li, J. B.; Fang, H. Y., Scaled boundary finite element approach for waveguide eigenvalue problem, IET Microw Antennas Propag, 12, 5, 1508-1515 (2011)
[36] Lehmann, L.; Langer, S.; Clasen, D., Scaled boundary finite element method for acoustic, J Comput Acoust, 14, 4, 489-506 (2006) · Zbl 1198.76080
[37] Liu, J.; Lin, G.; Li, J. B., Short-crested waves interaction with a concentric cylindrical structure with double-layered perforated walls, Ocean Eng, 40, 76-90 (2012)
[38] Bazyar, M. H.; Talebi, A., Transient seepage analysis in zoned anisotropic soils based on the scaled boundary finite-element method, Int J Numer Anal Methods Geomech, 39, 1, 1-22 (2015)
[39] Lu, S.; Liu, J.; Lin, G., High performance of the scaled boundary finite element method applied to the inclined soil field in time domain, Eng Anal Boundary Elem, 56, 1-19 (2015) · Zbl 1403.74197
[40] Bazyar, M. H.; Talebi, A., A scaled boundary finite-element solution to non-homogeneous anisotropic heat conduction problems, Appl Math Model, 39, 23-24, 7583-7599 (2015) · Zbl 1443.80001
[41] Meng, X. N.; Zou, Z. J., Wave interaction with a uniform porous cylinder of arbitrary shape, Ocean Eng, 44, 90-99 (2012)
[42] Liu, J.; Lin, G., A scaled boundary finite element method applied to electrostatic problems, Eng Anal Boundary Elem, 36, 12, 1721-1732 (2012) · Zbl 1351.78048
[43] Deeks, A. J.; Cheng, L., Potential flow around obstacles using the scaled boundary finite-element method, Int J Numer Methods Fluids, 41, 721-741 (2003) · Zbl 1107.76348
[44] Li, J.; Liu, J.; Lin, G., Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method, Earthq Eng Eng Vib, 12, 4, 541-546 (2013)
[45] Liu, J.; Zhang, P.; Lin, G.; Wang, W.; Lu, S., Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method, Eng Anal Boundary Elem, 68, 103-114 (2016) · Zbl 1403.74191
[46] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[47] Lieu, Q. X.; Lee, S.; Kang, J.; Lee, J., Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis, Compos Struct, 192, 434-451 (2018)
[48] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput Methods Appl Mech Eng, 199, 5-8, 301-313 (2010) · Zbl 1227.65029
[49] Xia, Z.; Wang, Y.; Wang, Q.; Mei, C., GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis, Struct Multidiscip Optim, 56, 2, 413-434 (2017)
[50] Rauen, M.; Machado, R. D.; Arndt, M., Isogeometric analysis of free vibration of framed structures: comparative problems, Eng Comput, 34, 2, 377-402 (2017)
[51] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment, Int J Fract, 204, 1, 55-78 (2017)
[52] Zare, A.; Eghtesad, M.; Daneshmand, F., Numerical investigation and dynamic behavior of pipes conveying fluid based on isogeometric analysis, Ocean Eng, 140, 388-400 (2017)
[53] Hoang, T.; Verhoosel, C. V.; Auricchio, F.; van Brummelen, E. H.; Reali, A., Skeleton-stabilized isogeometric analysis: high-regularity interior-penalty methods for incompressible viscous flow problems, Comput Methods Appl Mech Eng, 337, 324-351 (2018) · Zbl 1440.76068
[54] An, Z.; Yu, T.; Bui, T. Q.; Wang, C.; Trinh, N. A., Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis, Adv Eng Softw, 116, 36-49 (2018)
[55] Nguyen-Thanh, N.; Li, W.; Zhou, K., Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach, Comput Mech, 62, 6, 1287-1309 (2018) · Zbl 1462.74167
[56] Lin, G.; Zhang, Y.; Hu, Z. Q.; Zhong, H., Scaled boundary isogeometric analysis for 2D elastostatics, Sci China Phys Mech Astron, 57, 2, 286-300 (2014)
[57] Gravenkamp, H.; Natarajan, S.; Dornisch, W., On the use of NURBS-based discretizations in the scaled boundary for wave propagation problems, Comput Methods Appl Mech Eng, 315, 867-880 (2017) · Zbl 1439.74484
[58] Li, P.; Liu, J.; Lin, G.; Zhang, P.; Yang, G., A NURBS-based scaled boundary finite element method for the analysis of heat conduction problems with heat fluxes and temperatures on side-faces, Int J Heat Mass Transf, 113, 764-779 (2017)
[59] Liu, J.; Li, J.; Li, P.; Lin, G.; Xu, T.; Chen, L., New application of the isogeometric boundary representations methodology with SBFEM to seepage problems in complex domains, Comput Fluids, 174, 241-255 (2018) · Zbl 1410.76185
[60] Li, P.; Lin, G.; Liu, J.; Zhou, Y.; Xu, B., Solution of steady-state thermoelastic problems using a scaled boundary representation based on nonuniform rational B-splines, J Thermal Stress, 41, 2, 222-246 (2018)
[61] Klinkel, S.; Chen, L.; Dornisch, W., A NURBS based hybrid collocation - Galerkin method for the analysis of boundary represented solids, Comput Methods Appl Mech Eng, 284, 689-711 (2015) · Zbl 1425.65166
[62] Chasapi, M.; Klinkel, S., A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation, Comput Methods Appl Mech Eng, 333, 475-496 (2018) · Zbl 1440.74078
[63] Chen, L.; Simeon, B.; Klinkel, S., A NURBS based Galerkin approach for the analysis of solids in boundary representation, Comput Methods Appl Mech Eng, 305, 777-805 (2016) · Zbl 1425.74456
[64] Nezami, M.; Mohammadi, M. M.; Oveisi, A., Liquid sloshing in a horizontal circular container with eccentric tube under external excitation, Shock Vib, 2014, Article 507281 pp. (2014)
[65] Wang, W.; Guo, Z.; Peng, Y.; Zhang, Q., A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks, Ocean Eng, 111, 543-568 (2016)
[66] Spyros, A. K.; Dimitris, P.; Manolis, A. P., Finite element analysis of externally-induced sloshing in horizontal-cylindrical and axisymmetric liquid vessels, 131 (2009), ASME - Pressure Vessel and Piping Division, 051301-1-12
[67] McIver, P., Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth, J Fluid Mech, 201, 243-257 (1989) · Zbl 0667.76024
[68] Watson, E. B.B.; Evans, D. V., Resonant frequencies of a fluid in containers with internal bodies, J Eng Math, 25, 2, 115-135 (1991) · Zbl 0749.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.