×

A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator. (English) Zbl 07508359

Summary: We propose a spectral method by using the Jacobi functions for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator (FSO). In the problem, in order to get reliable gaps distribution statistics, we have to calculate accurately and efficiently a very large number of eigenvalues, e.g. up to thousands or even millions eigenvalues, of an eigenvalue problem related to the FSO. For simplicity, we start with the eigenvalue problem of the FSO in one dimension (1D), reformulate it into a variational formulation and then discretize it by using the Jacobi spectral method. Our numerical results demonstrate that the proposed Jacobi spectral method has several advantages over the existing finite difference method (FDM) and finite element method (FEM) for the problem: (i) the Jacobi spectral method is spectral accurate, while the FDM and FEM are only first order accurate; and more importantly (ii) under a fixed number of degree of freedoms \(M\), the Jacobi spectral method can calculate accurately a large number of eigenvalues with the number proportional to \(M\), while the FDM and FEM perform badly when a large number of eigenvalues need to be calculated. Thus the proposed Jacobi spectral method is extremely suitable and demanded for the discretization of an eigenvalue problem when a large number of eigenvalues need to be calculated. Then the Jacobi spectral method is applied to study numerically the asymptotics of the nearest neighbour gaps, average gaps, minimum gaps, normalized gaps and their distribution statistics in 1D. Based on our numerical results, several interesting numerical observations (or conjectures) about eigenvalue gaps and their distribution statistics of the FSO in 1D are formulated. Finally, the Jacobi spectral method is extended to the directional fractional Schrödinger operator in high dimensions and extensive numerical results about eigenvalue gaps and their distribution statistics are reported.

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, B.; Clutterbuck, J., Proof of the fundamental gap conjecture, J. Am. Math. Soc., 24, 899-916 (2010) · Zbl 1222.35130
[2] Antoine, X.; Tang, Q. L.; Zhang, Y., On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, J. Comput. Phys., 325, 74-97 (2016) · Zbl 1380.65296
[3] Antoine, X.; Lorin, E., Explicit computation of Robin parameters in optimized Schwarz waveform relaxation methods for Schrödinger equations based on pseudo differential operators, Commun. Comput. Phys., 27, 1032-1052 (2020) · Zbl 1473.65180
[4] Ashbaugh, M. S.; Benguria, R., Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Am. Math. Soc., 105, 419-424 (1989) · Zbl 0668.34023
[5] Babuška, I.; Osborn, J. E., Eigenvalue Problems, Handbook of Numerical Analysis (1991)
[6] Bader, P.; Blanes, S.; Casas, F., Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients, J. Chem. Phys., 139, Article 124117 pp. (2013)
[7] Banjai, L.; Melenk, J. M.; Nochetto, R. H.; Otárola, E.; Salgado, A. J.; Schwab, C., Tensor FEM for spectral fractional diffusion, Found. Comput. Math., 19, 901-962 (2019) · Zbl 1429.65272
[8] Bao, W.; Ben Abdallah, N.; Cai, Y., Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement, SIAM J. Math. Anal., 44, 1713-1741 (2012) · Zbl 1246.35187
[9] Bao, W.; Dong, X., Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars, J. Comput. Phys., 230, 5449-5469 (2011) · Zbl 1220.83023
[10] Bao, W.; Jian, H.; Mauser, N. J.; Zhang, Y., Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials, SIAM J. Appl. Math., 73, 2100-2123 (2013) · Zbl 1294.35130
[11] Bao, W.; Ruan, X., Fundamental gaps of the Gross-Pitaevskii equation with repulsive interaction, Asymptot. Anal., 110, 53-82 (2018) · Zbl 1417.35175
[12] Bao, W.; Ruan, X.; Shen, J.; Sheng, C., Fundamental gaps of the fractional Schrödinger operator, Commun. Math. Sci., 17, 447-471 (2019) · Zbl 1429.35195
[13] Berg, M. V.D., On condensation in the free-boson gas and the spectrum of the Laplacian, J. Stat. Phys., 31, 623-637 (1983)
[14] Bernardi, C.; Maday, Y., Spectral methods, Handb. Numer. Anal., 5, 209-485 (1997)
[15] Boffi, D., Finite element approximation of eigenvalue problems, Acta Numer., 19, 1-120 (2010) · Zbl 1242.65110
[16] Bonito, A.; Borthagaray, J. P.; Ricardo, R. H.; Otárola, E.; Abner, A. J., Fundamental gaps of the fractional Schrödinger operator, Comput. Vis. Sci., 19, 19-46 (2018) · Zbl 07704543
[17] Borthagaray, J. P.; Pezzo, L. M.D.; Martínez, S., Finite element approximation for the fractional eigenvalue problem, J. Sci. Comput., 77, 308-329 (2018) · Zbl 1412.65203
[18] Bourgain, J.; Blomerand, V.; Rudnick, Z., Small gaps in the spectrum of the rectangular billiard, Ann. Sci. Éc. Norm. Supér., 50, 1283-1300 (2017) · Zbl 1405.35120
[19] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260 (2007) · Zbl 1143.26002
[20] Cai, Y.; Rosenkranz, M.; Lei, Z.; Bao, W., Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions, Phys. Rev. A, 82, Article 043623 pp. (2010)
[21] Carusotto, L.; Citui, C., Quantum fluids of lights, Rev. Mod. Phys., 85, 299 (2013)
[22] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 1743-1750 (2012) · Zbl 1242.65157
[23] Chang, S. L.; Chien, C. S.; Jeng, B. W., An efficient algorithm for the Schrödinger-Poisson eigenvalue problem, J. Comput. Appl. Math., 205, 509-532 (2007) · Zbl 1122.65105
[24] Chen, L. Z.; Mao, Z. P.; Li, H. Y., Jacobi-Galerkin spectral method for eigenvalue problems of Riesz fractional differential equations
[25] Chen, Z. Q.; Song, R., Two sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226, 90-113 (2005) · Zbl 1081.60056
[26] Connors, R. D.; Keating, J. P., Two-point spectral correlations for the square billiard, J. Phys. A, 30, 1817-1830 (1997) · Zbl 0932.37022
[27] Costiner, S.; Ta’asan, S., Simultaneous multigrid techniques for nonlinear eigenvalue problems: solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions, Phys. Rev. E, 52, 1181 (1995)
[28] D’Elia, M.; Gunzburger, M., The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66, 1245-1260 (2013) · Zbl 1345.35128
[29] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., Ana’lysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 667-696 (2012) · Zbl 1422.76168
[30] Duo, S. W.; Zhang, Y. Z., Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18, 321-350 (2015) · Zbl 1388.65051
[31] Dyda, B., Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15, 536-555 (2012) · Zbl 1312.35176
[32] Elgart, A.; Schlein, B., Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60, 500-545 (2007) · Zbl 1113.81032
[33] Fan, W. P.; Liu, F. W.; Jiang, X. Y.; Tumer, I., A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain, Fract. Calc. Appl. Anal., 20, 352-383 (2017) · Zbl 1364.65162
[34] Freiberg, T.; Kurlberg, P.; Rosenzweig, L., Poisson distribution for gaps between sums of two squares and level spacings for toral point scatterers, Commun. Number Theory Phys., 11, 837-877 (2017) · Zbl 1426.11096
[35] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman Advanced Pub: Pitman Advanced Pub Boston · Zbl 0695.35060
[36] Grubb, G., Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators, Adv. Math., 268, 478-528 (2015) · Zbl 1318.47064
[37] Grubb, G., Singular Green operators and their spectral asymptotics, Duke Math. J., 51, 477-528 (1984) · Zbl 0553.58034
[38] Harrell, E. M., Commutators, eigenvalue gaps, and mean curvature in the theory of Schrödinger operators, Commun. Partial Differ. Equ., 32, 401-413 (2007) · Zbl 1387.35136
[39] Jakobson, D.; Miller, S.; Rivin, I.; Rudnick, Z., Level spacings for regular graphs, IMA Math. Appl., 109, 317-329 (1999)
[40] Jiang, S.; Greengard, L.; Bao, W., Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT, SIAM J. Sci. Comput., 36, B777-B794 (2014) · Zbl 1307.65184
[41] Jin, B. T.; Lazarov, R.; Pasciak, J.; Rundell, W., A finite element method for the fractional Sturm-Liouville problem
[42] Kwaśnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 7-51 (2017) · Zbl 1375.47038
[43] Kwaśnicki, M., Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262, 2379-2402 (2012) · Zbl 1234.35164
[44] Li, P.; Yau, S. T., On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 88, 309-318 (1983) · Zbl 0554.35029
[45] Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications (1972), Springer-Verlag · Zbl 0227.35001
[46] Lischke, A.; Pang, G. F.; Gulian, M.; Song, F. Y.; Glusa, C.; Zheng, X. N.; Mao, Z. P.; Cai, W.; Meerschaert, M. M.; Ainsworth, M., What is the fractional Laplacian?
[47] Liu, F. W.; Chen, S. P.; Turner, I.; Burrage, K.; Anh, V., Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys., 11, 1221-1232 (2013)
[48] Livne, O. E.; Brandt, A., Multiscale Eigenbasis Calculations: N Eigenfunctions in O(N log N) (2002), Springer: Springer Berlin, Heidelberg · Zbl 0989.65129
[49] Luchko, Y., Fractional Schrödinger equation for a particle moving in a potential well, J. Math. Phys., 54, Article 012111 pp. (2013) · Zbl 1280.81044
[50] Ma, Y.; Chen, L., A Jacobi-Galerkin spectral method for computing the ground and first excited states of nonlinear fractional Schrödinger equation, East Asian J. Appl. Math., 10, 274-294 (2020) · Zbl 1468.65166
[51] Mao, Z. P.; Chen, S.; Shen, J., Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations, Appl. Numer. Math., 106, 165-181 (2016) · Zbl 1382.65222
[52] Mao, Z. P.; Shen, J., Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys., 307, 243-261 (2016) · Zbl 1352.65395
[53] Mehl, C.; Borm, S., Numerical Methods for Eigenvalue Problems (2008)
[54] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023
[55] Offermanns, S.; Rosenthal, W., Bimodal Distribution (2008), Springer: Springer Berlin, Heidelberg
[56] Owolabi, K. M.; Atangana, A., Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Eur. Phys. J. Plus, 131, 335 (2016)
[57] Pinsker, F.; Bao, W.; Zhang, Y.; Ohadi, H.; Dreismann, A.; Baumberg, J. J., Fractional quantum mechanics in polariton condensates with velocity dependent mass, Phys. Rev. B, 92, Article 195310 pp. (2015)
[58] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[59] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer: Springer Berlin, Heidelberg · Zbl 0803.65088
[60] Reutskiy, S. Y., A new numerical method for solving high-order fractional eigenvalue problems, J. Comput. Appl. Math., 317, 603-623 (2017) · Zbl 1358.65051
[61] Rudnick, Z., A metric theory of minimal gaps, Numer. Algorithms, 64, 628-636 (2018) · Zbl 1451.11085
[62] Rudnick, Z.; Zaharescu, A., The distribution of spacings between fractional parts of lacunary sequences, Forum Math., 14, 691-712 (2002) · Zbl 1168.11317
[63] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
[64] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer Publishing Company · Zbl 1227.65117
[65] Valdinoci, E., From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49, 33-44 (2009) · Zbl 1242.60047
[66] Weideman, J. A.C.; Trefethen, L. N., The eigenvalues of second-order spectral differentiation matrices, SIAM J. Numer. Anal., 25, 1279-1298 (1988) · Zbl 0666.65063
[67] Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71, 441-479 (1912) · JFM 43.0436.01
[68] Zeng, F.; Liu, F.; Li, C.; Burrage, K.; Turner, I.; Anh, V., A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52, 2599-2622 (2014) · Zbl 1382.65349
[69] Zhao, X.; Sun, Z.; Peng, H. Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36, A2865-A2886 (2014) · Zbl 1328.65187
[70] Zhang, J. W.; Li, D. F.; Antoine, X., Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain, Commun. Comput. Phys., 25, 218-243 (2019) · Zbl 1516.65070
[71] Zoia, A.; Rosso, A.; Kardar, M., Fractional Laplacian in bounded domains, Phys. Rev. E, 76, Article 021116 pp. (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.