×

A Nitsche-type variational formulation for the shape deformation of a single component vesicle. (English) Zbl 1441.65106

Summary: This paper concerns the development of a finite-element formulation using Nitsche’s method for the phase-field model to capture an equilibrium shape of a single component vesicle. The phase-field model derived from the minimization of the curvature energy results in a nonlinear fourth-order partial differential equation. A standard conforming Galerkin formulation thus requires \(C^1\)-elements. We derive a nonconforming finite-element formulation that can be applied to \(C^0\)-elements and prove its consistency. Continuity of the first derivatives across interelement boundaries is weakly imposed and stabilization of the method is achieved via Nitsche’s method. The capability of the proposed finite-element formulation is demonstrated through numerical study of the equilibrium shapes of axisymmetric single component vesicles along with budding and fission phenomena.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49J10 Existence theories for free problems in two or more independent variables
49J45 Methods involving semicontinuity and convergence; relaxation

Software:

MOOSE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mouritsen, O., Life - As a Matter of Fat: The Emerging Science of Lipidomics (2005), Springer: Springer Berlin
[2] Deseri, L.; Piccioni, M. D.; Zurlo, G., Derivation of a new free energy for biological membranes, Contin. Mech. Thermodyn., 20, 255-273 (2008) · Zbl 1160.74387
[3] Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46, 13-137 (1997)
[4] Canham, P., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theoret. Biol., 26, 61-81 (1970)
[5] Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch. C, 28, 693-703 (1973)
[6] Evans, E. A., Bending resistance and chemically induced moments in membrane bilayers, Biophys. J., 14, 923-931 (1974)
[7] Du, Q.; Liu, C.; Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198, 450-468 (2004) · Zbl 1116.74384
[8] Du, Q.; Liu, C.; Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 757-777 (2006) · Zbl 1086.74024
[9] Du, Q.; Wang, X., Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations, Int. J. Numer. Anal. Model., 4, 441-459 (2007) · Zbl 1130.74046
[10] Du, Q.; Zhang, J., Adaptive finite-element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J. Sci. Comput., 30, 1634-1657 (2008) · Zbl 1162.74042
[11] F.K. Bogner, R.L. Fox, L.A. Schmit, The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formula, in: Proceedings of 1st Conference on Matrix Methods in Structural Mechanics AFFDL-TR-66-80, 1966, pp. 397-443.
[12] Petera, J.; Pittman, J. F.T., Isoparametric hermite elements, Internat. J. Numer. Methods Engrg., 37, 3489-3519 (1994) · Zbl 0814.76061
[13] Papanicolopulos, S. A.; Zervos, A.; Vardoulakis, I., A three-dimensional C1 finite element for gradient elasticity, Internat. J. Numer. Methods Engrg., 77, 1396-1415 (2009) · Zbl 1156.74382
[14] Fortin, M.; Brezzi, F., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[15] Embar, A.; Dolbow, J.; Fried, E., Microdomain evolution on giant unilamellar vesicles, Biomech. Model. Mechanobiol., 12, 597-615 (2012)
[16] Nitsche, J. A., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg., 36, 9-15 (1970) · Zbl 0229.65079
[17] Baker, G. A., Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31, 45-59 (1977) · Zbl 0364.65085
[18] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M. G.; Mazzei, L.; Taylor, R. L., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191, 3669-3750 (2002) · Zbl 1086.74038
[19] Kim, T.-Y.; Dolbow, J. E.; Fried, E., A numerical method for a second-gradient theory of incompressible fluid flow, J. Comput. Phys., 223, 551-570 (2007) · Zbl 1183.76809
[20] Kim, T.-Y.; Dolbow, J. E., An edge-bubble stabilized finite element method for fourth-order parabolic problems, Finite Elem. Anal. Des., 45, 485-494 (2009)
[21] Kim, T.-Y.; Dolbow, J. E.; Fried, E., Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials, Int. J. Solids Struct., 49, 3942-3952 (2012)
[22] Singhal, T.; Kim, E.; Kim, T.-Y.; Yang, J., Weak bond detection in composites using highly nonlinear solitary waves, Smart Mater. Struct., 26, 5, Article 055011 pp. (2017)
[23] Schiffer, A.; Alkhaja, A. I.; Yang, J.; Esfahani, E. N.; Kim, T.-Y., Interaction of highly nonlinear solitary waves with elastic solids containing a spherical void, Int. J. Solids Struct., 118-119, 204-212 (2017)
[24] Kim, T.-Y.; Rebholz, L. G.; Fried, E., A deconvolution enhancement of the Navier-Stokes-\( \alpha \beta\) model, J. Comput. Phys., 231, 11, 4015-4027 (2012) · Zbl 1404.76140
[25] Kim, T.-Y.; Park, E.-J.; Shin, D.-W., A \(C^0\)-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 300, 225-244 (2016) · Zbl 1425.74473
[26] Shin, D.; Kang, Y.; Park, E. J., \(C^0\)-Discontinuous Galerkin methods for a wind-driven ocean circulation model: Two-grid algorithm, Comput. Methods Appl. Mech. Engrg., 328, 321-339 (2018) · Zbl 1439.86007
[27] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements, Internat. J. Numer. Methods Engrg., 83, 877-898 (2010) · Zbl 1197.74178
[28] Kim, T.-Y.; Puntel, E.; Fried, E., Numerical study of the wrinkling of a stretched thin sheet, Int. J. Solids Struct., 49, 771-782 (2012)
[29] Kim, T.-Y.; Iliescu, T.; Fried, E., B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 286, 168-191 (2015) · Zbl 1423.76246
[30] Jiang, W.; Kim, T.-Y., Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries, Comput. Methods Appl. Mech. Engrg., 299, 144-160 (2016) · Zbl 1425.74469
[31] Jiang, W.; Annavarapu, C.; Dolbow, J. E.; Harari, I., A robust Nitsche’s formulation for interface problems with spline-based finite elements, Internat. J. Numer. Methods Engrg., 104, 7, 676-696 (2015) · Zbl 1352.65515
[32] Jiang, W.; Dolbow, J. E., Adaptive refinement of hierarchical B-spline finite elements with an efficient data transfer algorithm, Internat. J. Numer. Methods Engrg., 102, 233-256 (2015) · Zbl 1352.65516
[33] Al Balushi, I.; Jiang, W.; Tsogtgerel, G.; Kim, T.-Y., Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation, Comput. Methods Appl. Mech. Engrg., 332, 1-24 (2018) · Zbl 1439.76044
[34] Kim, D.; Kim, T.-Y.; Park, E. J.; Shin, D., Error estimates of B-spline based finite-element methods for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 335, 255-272 (2018) · Zbl 1440.86001
[35] Rotundo, N.; Kim, T.-Y.; Jiang, W.; Heltai, L.; Fried, E., Error analysis of a B-spline based finite-element method for modeling wind-driven ocean circulation, J. Sci. Comput., 69, 1, 430-459 (2016) · Zbl 1398.76124
[36] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandié, D., MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239, 1768-1778 (2009)
[37] Berselli, L. C.; Kim, T.-Y.; Rebholz, L. G., Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization, Discrete Contin. Dyn. Syst. Ser. B, 21, 4, 1027-1050 (2016) · Zbl 1346.35157
[38] Song, J.-H.; Fu, Y.; Kim, T.-Y.; Yoon, Y.-C.; Michopoulos, J. G.; Rabczuk, T., Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method, Int. J. Mech. Mater. Des., 14, 4, 491-509 (2018)
[39] Beel, A.; Kim, T.-Y.; Jiang, W.; Song, J.-H., Strong form-based meshfree collocation method for wind-driven ocean circulation, Comput. Methods Appl. Mech. Engrg., 351, 404-421 (2019) · Zbl 1441.86006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.