zbMATH — the first resource for mathematics

Large scale water entry simulation with smoothed particle hydrodynamics on single- and multi-GPU systems. (English) Zbl 1375.76147
Summary: In this paper, a Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) framework is presented utilizing the parallel architecture of single- and multi-GPU (Graphic Processing Unit) platforms. The program is developed for water entry simulations where an efficient potential based contact force is introduced to tackle the interaction between fluid and solid particles. The single-GPU SPH scheme is implemented with a series of optimization to achieve high performance. To go beyond the memory limitation of single GPU, the scheme is further extended to multi-GPU platform basing on an improved 3D domain decomposition and inter-node data communication strategy. A typical benchmark test of wedge entry is investigated in varied dimensions and scales to validate the accuracy and efficiency of the program. The results of 2D and 3D benchmark tests manifest great consistency with the experiment and better accuracy than other numerical models. The performance of the single-GPU code is assessed by comparing with serial and parallel CPU codes. The improvement of the domain decomposition strategy is verified, and a study on the scalability and efficiency of the multi-GPU code is carried out as well by simulating tests with varied scales in different amount of GPUs. Lastly, the single- and multi-GPU codes are further compared with existing state-of-the-art SPH parallel frameworks for a comprehensive assessment.
76M28 Particle methods and lattice-gas methods
65Y10 Numerical algorithms for specific classes of architectures
Full Text: DOI
[1] Gingold, R. A.; Monaghan, J., Mon. Not. R. Astron. Soc., 375-389, (1977)
[2] Koumoutsakos, P., Annu. Rev. Fluid Mech., 37, 457-487, (2005)
[3] Mokos, A.; Rogers, B. D.; Stansby, P. K.; Domínguez, J. M., Comput. Phys. Comm., 196, 304-316, (2015)
[4] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., J. Comput. Phys., 213, 803-822, (2006)
[5] J. Vandamme, Q. Zou, D.E. Reeve, Modeling Floating Object Entry and Exit Using Smoothed Particle Hydrodynamics, 2011. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000086.
[6] Shao, S., Internat. J. Numer. Methods Fluids, 59, 91-115, (2009)
[7] Liu, X.; Lin, P.; Shao, S., J. Fluids Struct., 48, 46-61, (2014)
[8] Amada, T.; Imura, M.; Yasumuro, Y.; Manabe, Y.; Chihara, K., (ACM Work. Gen. Comput. Graph. Process, (2004)), 1-2
[9] Kolb, A.; Cuntz, N., Proc 18th Symp. Simul. Tech., 722-727, (2005)
[10] Harada, T.; Koshizuka, S.; Kawaguchi, Y., Comput. Graph. Int., 63-70, (2007)
[11] Hérault, A., J. Hydraul. Res., 48, 74-79, (2010)
[12] X. Gao, Z. Wang, H. Wan, X. Long, Accelerate Smoothed Particle Hydrodynamics using GPU, 2010 IEEE Youth Conf. Information, Comput. Telecommun., 2010, pp. 399-402. http://dx.doi.org/10.1109/YCICT.2010.5713129.
[13] Crespo, A. C.; Dominguez, J. M.; Barreiro, A.; Gómez-Gesteira, M.; Rogers, B. D., PLoS One, 6, e20685, (2011)
[14] Domínguez, J. M.; Crespo, A. J.C.; Gómez-Gesteira, M., Comput. Phys. Comm., 184, 617-627, (2013), arXiv:1110.3711
[15] Crespo, A.; Domínguez, J.; Rogers, B.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O., Comput. Phys. Comm., 187, 204-216, (2015)
[16] Rustico, E.; Bilotta, G.; Herault, A.; Del Negro, C.; Gallo, G., IEEE Trans. Parallel Distrib. Syst., 25, 43-52, (2014)
[17] Xiong, Q.; Li, B.; Xu, J., Comput. Phys. Commun., 184, 1701-1707, (2013)
[18] Valdez-Balderas, D.; Domínguez, J. M.; Rogers, B. D.; Crespo, A. J.C., J. Parallel Distrib. Comput., 73, 1483-1493, (2013), arXiv:1210.1017
[19] Domínguez, J. M.; Crespo, A. J.C.; Valdez-Balderas, D.; Rogers, B. D.; Gómez-Gesteira, M., Comput. Phys. Comm., 184, 1848-1860, (2013)
[20] Gomez-Gesteira, M.; Rogers, B. D.; Crespo, A. J.; Dalrymple, R.; Narayanaswamy, M.; Dominguez, J. M., Comput. Geosci., 48, 289-299, (2012)
[21] Gomez-Gesteira, M.; Crespo, A. J.C.; Rogers, B. D.; Dalrymple, R. A.; Dominguez, J. M.; Barreiro, A., Comput. Geosci., 48, 300-307, (2012)
[22] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, Vol. 68, (2003), arXiv:981-238-456-1 · Zbl 1046.76001
[23] Cummins, S. J.; Rudman, M., J. Comput. Phys., 152, 584-607, (1999)
[24] Monaghan, J. J.; Kos, A., J. Waterw. Port, Coastal, Ocean Eng., 125, 145-154, (1999)
[25] Monaghan, J., J. Comput. Phys., 82, 1-15, (1989)
[26] Monaghan, J. J., Rep. Progr. Phys., 68, 1703-1759, (2005), arXiv:0507472v1
[27] Violeau, D., Fluid mechanics and the SPH method: theory and applications, (2012), Oxford University Press · Zbl 1247.76001
[28] J. Monaghan, Simulating Free Surface Flows with SPH, 1994. http://dx.doi.org/10.1006/jcph.1994.1034. · Zbl 0794.76073
[29] Rogers, B. D.; Dalrymple, R. A., Adv. Coast. Ocean Eng., 10, 75-100, (2008)
[30] Johnson, G. R., Nucl. Eng. Des., 150, 265-274, (1994)
[31] Attaway, S.; Heinstein, M.; Swegle, J., Nucl. Eng. Des., 150, 199-205, (1994)
[32] De Vuyst, T.; Vignjevic, R.; Campbell, J. C., Int. J. Impact Eng., 31, 1054-1064, (2005)
[33] J. Campbell, R. Vignjevic, M. Patel, A coupled FE-SPH pproach for simulation of structural response to extreme wave and green water loading.
[34] Vignjevic, R.; De Vuyst, T.; Campbell, J. C., C. - Comput. Model. Eng. Sci., 13, 35-47, (2006)
[35] Maruzewski, P., J. Hydraul. Res., 48, 000, (2009)
[36] R. Farber, CUDA Application Design and Development, 2011. http://dx.doi.org/10.1016/j.cam.2005.07.014.
[37] Dominguez, J. M.; Crespo, A. J.C.; Gomez-Gesteira, M.; Marongiu, J. C., Int. J. Numer. Methods Fluids, 67, 12, 2026-2042, (2011)
[38] C. Nvidia, NVIDIA CUDA C Programming Guide, Changes, 2011, p. 173. PG-02829-001_v6.0.
[39] N. Satish, M. Harris, M. Garland, in: IPDPS 2009 - Proc. 2009 IEEE Int. Parallel Distrib. Process. Symp., 2009, pp. 1-10. http://dx.doi.org/10.1109/IPDPS.2009.5161005.
[40] Zhao, R.; Faltinsen, O.; Aarsnes, J., (Proc. 21st Symp. Nav. Hydrodyn., Trondheim, Norway, (1996), National Academy Press Washington, DC, USA), 408-423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.