# zbMATH — the first resource for mathematics

Selection and ranking procedures for type I extreme value populations and a related homogeneity test. (English) Zbl 1319.62043
Summary: Consider $$k$$ $$(\geq 2)$$ independent Type I extreme value populations with unknown location parameters and common known scale parameter. With samples of same size, we study procedures based on the sample means for (1) selecting the population having the largest location parameter, (2) selecting the population having the smallest location parameter, and (3) testing for equality of all the location parameters. We use Bechhofer’s indifference-zone and Gupta’s subset selection formulations. Tables of constants for implemention are provided based on approximation for the distribution of the standardized sample mean by a generalized Tukey’s lambda distribution. Examples are provided for all procedures.
##### MSC:
 62F07 Statistical ranking and selection procedures 62F03 Parametric hypothesis testing
Full Text:
##### References:
 [1] Abramowitz M., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1965) · Zbl 0171.38503 [2] DOI: 10.2307/2348874 · doi:10.2307/2348874 [3] DOI: 10.1214/aoms/1177728845 · Zbl 0055.13003 · doi:10.1214/aoms/1177728845 [4] Bechhofer R. E., Biometrika 41 pp 170– (1954) [5] Gupta , S. S. ( 1956 ). On a Decision Rule for a Problem in Ranking Means. PhD. dissertation (Mimeo. Series No. 150), Institute of Statistics , Chapel Hill, North Carolina : University of North Carolina . · Zbl 0073.35901 [6] DOI: 10.2307/1266672 · Zbl 0147.17902 · doi:10.2307/1266672 [7] Gupta S. S., Proc. 1990 Taipei Symp. Statist. pp 133– (1991) [8] Gupta S. S., Multiple Decision Procedures: Methodology of Selecting and Ranking Populations (1979) · Zbl 0516.62030 [9] Gupta S. S., American Journal of Mathematical and Management Sciences 5 pp 235– (1985) · Zbl 0633.62024 · doi:10.1080/01966324.1985.10737171 [10] DOI: 10.2307/2347436 · doi:10.2307/2347436 [11] Johnson N. L., Continuous Univariate Distributions 2, 2. ed. (1995) · Zbl 0821.62001 [12] DOI: 10.1145/360827.360840 · Zbl 0273.65004 · doi:10.1145/360827.360840 [13] DOI: 10.2307/1268517 · Zbl 0403.62004 · doi:10.2307/1268517 [14] Tamhane A. C., Communications in Statistics: Theory and Methods 6 pp 1003– (1977) · doi:10.1080/03610927708827549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.