×

Computational aspects of growth-induced instabilities through eigenvalue analysis. (English) Zbl 1326.74093

Summary: The objective of this contribution is to establish a computational framework to study growth-induced instabilities. The common approach towards growth-induced instabilities is to decompose the deformation multiplicatively into its growth and elastic part. Recently, this concept has been employed in computations of growing continua and has proven to be extremely useful to better understand the material behavior under growth. While finite element simulations seem to be capable of predicting the behavior of growing continua, they often cannot naturally capture the instabilities caused by growth. The accepted strategy to provoke growth-induced instabilities is therefore to perturb the solution of the problem, which indeed results in geometric instabilities in the form of wrinkles and folds. However, this strategy is intrinsically subjective as the user is prescribing the perturbations and the simulations are often highly perturbation-dependent. We propose a different strategy that is inherently suitable for this problem, namely eigenvalue analysis. The main advantages of eigenvalue analysis are that first, no arbitrary, artificial perturbations are needed and second, it is, in general, independent of the time step size. Therefore, the solution obtained by this methodology is not subjective and thus, is generic and reproducible. Equipped with eigenvalue analysis, we are able to compute precisely the critical growth to initiate instabilities. Furthermore, this strategy allows us to compare different finite elements for this family of problems. Our results demonstrate that linear elements perform strikingly poorly, as compared to quadratic elements.

MSC:

74L15 Biomechanical solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon Press, New York
[2] Bathe KJ (2013) The subspace iteration method—revisited. Comput Struct 126:177-183 · doi:10.1016/j.compstruc.2012.06.002
[3] Bathe K-J, Wilson EL (1973) Solution methods for eigenvalue problems in structural mechanics. Int J Numer Methods Eng 6:213-226 · Zbl 0252.73062 · doi:10.1002/nme.1620060207
[4] Ben Amar M, Goriely A (2005) Growth and instability in elastic tissues. J Mech Phys Solids 53:2284-2319 · Zbl 1120.74336 · doi:10.1016/j.jmps.2005.04.008
[5] Biot MA (1957) Folding instability of a layered viscoelastic medium under compression. Proc R Soc A 242:444-454 · Zbl 0125.13602 · doi:10.1098/rspa.1957.0187
[6] Biot MA (1965) Mechanics of incremental deformation. Wiley, New York
[7] Budday S, Kuhl E, Hutchinson JW (2015) Period-doubling and period-tripling in growing bilayered systems. Philos Mag. doi:10.1080/14786435.2015.1014443 · Zbl 1270.74137
[8] Budday S, Steinmann P, Kuhl E (2014) The role of mechanics during brain development. J Mech Phys Solids 72:75-92 · Zbl 1328.74061 · doi:10.1016/j.jmps.2014.07.010
[9] Cao Y, Hutchinson JW (2012a) From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc R Soc A 468:94-115 · Zbl 1243.74040 · doi:10.1098/rspa.2011.0384
[10] Cao Y, Hutchinson JW (2012b) Wrinkling phenomena in Neo-Hookean film/substrate bilayers. J Appl Mech 79:031019 · doi:10.1115/1.4005960
[11] Ciarletta P, Balbi V, Kuhl E (2014) Pattern selection in growing tubular tissues. Phys Rev Lett 113:248101 · doi:10.1103/PhysRevLett.113.248101
[12] Ciarletta P, Maugin GA (2011) Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. Int J Non-Linear Mech 46:1341-1346 · doi:10.1016/j.ijnonlinmec.2011.07.004
[13] Ciarletta P, Preziosi L, Maugin GA (2013) Mechanobiology of interfacial growth. J Mech Phys Solids 61(3):852-872 · Zbl 1258.92004 · doi:10.1016/j.jmps.2012.10.011
[14] Cowin SC, Hegedus DH (1976) Bone Remodeling. 1. Theory of Adaptive Elasticity. J Elast 6(3):313-326 · Zbl 0335.73028 · doi:10.1007/BF00041724
[15] Dervaux J, Ben Amar M (2011) Buckling condensation in constrained growth. J Mech Phys Solids 59(3):538-560 · Zbl 1270.74086 · doi:10.1016/j.jmps.2010.12.015
[16] Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J Mech Phys Solids 57:458-471 · Zbl 1170.74354 · doi:10.1016/j.jmps.2008.11.011
[17] Dunlop JWC, Fischer FD, Gamsjáger E, Fratzl P (2010) A theoretical model for tissue growth in confined geometries. J Mech Phys Solids 58:1073-1087 · Zbl 1244.74086 · doi:10.1016/j.jmps.2010.04.008
[18] Ehret AE (2015) On a molecular statistical basis for Ogden’s model of rubber elasticity. J Mech Phys Solids 78:249-268 · Zbl 1349.82168 · doi:10.1016/j.jmps.2015.02.006
[19] Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951-978 · Zbl 0979.74006 · doi:10.1016/S0749-6419(99)00081-9
[20] Eskandari M, Pfaller MR, Kuhl E (2013) On the role of mechanics in chronic lung disease. Materials 6:5639-5658 · doi:10.3390/ma6125639
[21] Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595-1625 · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[22] Genzer J, Groenewold J (2006) Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310-323 · doi:10.1039/b516741h
[23] Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759-791 · Zbl 1071.74699 · doi:10.1108/02644409710188664
[24] Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. Math Model Biosyst 102:1-44 · Zbl 1382.92184 · doi:10.1007/978-3-540-76784-8_1
[25] Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101-2118 · Zbl 1176.74116 · doi:10.1016/j.jmps.2005.03.007
[26] Hutchinson JW (2013) The role of nonlinear substrate elasticity in the wrinkling of thin films. Philos Trans R Soc A 371:20120422 · Zbl 1327.74102 · doi:10.1098/rsta.2012.0422
[27] Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50:4197-4216 · doi:10.1016/j.ijsolstr.2013.08.024
[28] Javili A, McBride A, Steinmann P (2013) thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802 · doi:10.1115/1.4023012
[29] Javili A, Steinmann P, Kuhl E (2014) A novel strategy to identify the critical conditions for growth-induced instabilities. J Mech Behav Biomed Mater 29:20-32 · doi:10.1016/j.jmbbm.2013.08.017
[30] Jiang H, Khang DY, Fei H, Kim H, Huang Y, Xiao J, Rogers JA (2008) Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J Mech Phys Solids 56:2585-2598 · Zbl 1171.74353 · doi:10.1016/j.jmps.2008.03.005
[31] Jin L, Cai S, Suo Z (2011) Creases in soft tissues generated by growth. Europhys Lett 95:64002 · doi:10.1209/0295-5075/95/64002
[32] Khang DY, Rogers JA, Lee HH (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19:1526-1536 · doi:10.1002/adfm.200801065
[33] Krischok A, Linder C (2015) On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int J Numer Methods Eng (under review) · Zbl 1352.74385
[34] Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches. Comput Mech 32:71-88 · Zbl 1151.74385 · doi:10.1007/s00466-003-0463-y
[35] Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6:321-331 · doi:10.1007/s10237-006-0062-x
[36] Li B, Cao YP, Feng XQ, Gao H (2011) Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J Mech Phys Solids 59:758-774 · doi:10.1016/j.jmps.2011.01.010
[37] Li B, Cao Y-P, Feng X-Q, Gao H (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8:5728 · doi:10.1039/c2sm00011c
[38] Linder C, Tkachuk M, Miehe C (2011) A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J Mech Phys Solids 59:2134-2156 · Zbl 1270.74035 · doi:10.1016/j.jmps.2011.05.005
[39] McBride AT, Javili A, Steinmann P, Bargmann S (2011) Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J Mech Phys Solids 59(10):2116-2133 · Zbl 1270.74058 · doi:10.1016/j.jmps.2011.06.002
[40] Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1-14 · doi:10.1016/j.mechrescom.2012.02.007
[41] Moulton DE, Goriely A (2011) Circumferential buckling instability of a growing cylindrical tube. J Mech Phys Solids 59(3):525-537 · Zbl 1270.74088 · doi:10.1016/j.jmps.2011.01.005
[42] Nguyen DT (2008) Finite element methods: parallel-sparse statics and Eigen-solutions. Springer, New York
[43] Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326(1567):565-584 · Zbl 0257.73034 · doi:10.1098/rspa.1972.0026
[44] Panuso D, Bathe KJ (1995) A four-node quadrilateral mixed-interpolated element for solids and fluids. Math Methods Models Appl Sci 5:1113-1128 · Zbl 0848.73068 · doi:10.1142/S0218202595000589
[45] Papastavrou A, Steinmann P, Kuhl E (2013) On the mechanics of continua with boundary energies and growing surfaces. J Mech Phys Solids 61:1446-1463 · doi:10.1016/j.jmps.2013.01.007
[46] Raina A, Linder C (2014) A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J Mech Phys Solids 65:12-34 · doi:10.1016/j.jmps.2013.12.011
[47] Raina A, Linder C (2015) A micromechanical model with strong discontinuities for failure in nonwovens at finite deformation. Int J Solids Struct (under review) · Zbl 1258.92004
[48] Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189:18-21 · doi:10.1126/science.1135626
[49] Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite-growth in soft elastic tissues. J Biomech 27(4):455-467 · doi:10.1016/0021-9290(94)90021-3
[50] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595-1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[51] Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413-1449 · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[52] Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359-386 · Zbl 0846.73068 · doi:10.1016/0045-7825(93)90215-J
[53] Sun J-Y, Xia S, Moon M-W, Oh KH, Kim K-S (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932-953 · doi:10.1098/rspa.2011.0567
[54] Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487-545 · doi:10.1115/1.3005109
[55] Tepole AB, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59:2177-2190 · Zbl 1270.74137 · doi:10.1016/j.jmps.2011.05.004
[56] Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York
[57] Tkachuk M, Linder C (2012) The maximal advance path constraint for the homogenization of materials with random network microstructure. Philos Mag 92:2779-2808 · doi:10.1080/14786435.2012.675090
[58] Wagner S, Lacour SP, Jones J, Hsu PHI, Sturm JC, Li T, Suo Z (2004) Electronic skin: architecture and components. Phys E 25:326-334 · doi:10.1016/j.physe.2004.06.032
[59] Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5:103-109 · doi:10.1108/eb023727
[60] Joshua A, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353-4366 · Zbl 1194.74480 · doi:10.1016/j.cma.2008.05.015
[61] Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin · Zbl 1153.74001
[62] Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201-209 · Zbl 0893.73072 · doi:10.1016/0045-7825(96)01037-7
[63] Wriggers P, Wagner W, Miehe C (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Comput Methods Appl Mech Eng 70:329-347 · Zbl 0653.73031 · doi:10.1016/0045-7825(88)90024-2
[64] Xu F, Potier-Ferry M, Belouettar S, Cong Y (2014) 3D finite element modeling for instabilities in thin films on soft substrates. Int J Solids Struct 51(21-22):3619-3632 · doi:10.1016/j.ijsolstr.2014.06.023
[65] Yavari A (2011) A geometric theory of growth mechanics. J Nonlinear Sci 20:781-830 · Zbl 1428.74157 · doi:10.1007/s00332-010-9073-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.