×

zbMATH — the first resource for mathematics

The coextension of commutative pomonoids and its application to triangular norms. (English) Zbl 07052500
Summary: Group coextensions of monoids, which generalise Schreier-type extensions of groups, have originally been defined by P. A. Grillet and J. Leech. The present paper deals with pomonoids, that is, monoids that are endowed with a compatible partial order. Following the lines of the unordered case, we define pogroup coextensions of pomonoids. We furthermore generalise the construction to the case that pomonoids instead of pogroups are used as the extending structures. The intended application lies in fuzzy logic, where triangular norms are those binary operations that are commonly used to interpret the conjunction. We present conditions under which the coextension of a finite totally ordered monoid leads to a triangular norm. Triangular norms of a certain type can therefore be classified on the basis of the presented results.
MSC:
06F05 Ordered semigroups and monoids
03B52 Fuzzy logic; logic of vagueness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aznar, E. R.; Sevilla, Á . M., Beck, H, and Leech coextensions, Semigroup Forum, 61, 385-404, (2000) · Zbl 0965.20038
[2] Bulman-Fleming, S.; Mahmoudi, M., The category of S-posets, Semigroup Forum, 71, 443-461, (2005) · Zbl 1095.20047
[3] Cintula, P.; Hájek, P.; Noguera, C., Handbook of Mathematical Fuzzy Logic, 1–2, (2011), College Publications: College Publications, London
[4] Cintula, P.; Klement, E. P.; Mesiar, R.; Navara, M., Residuated logics based on strict triangular norms with an involutive negation, Math. Log. Q., 52, 269-282, (2006) · Zbl 1165.03326
[5] Clifford, A. H., Semigroups admitting relative inverses, Annals of Math., 42, 1037-1049, (1941) · Zbl 0063.00920
[6] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, (2010), AMS: AMS, Providence, RI
[7] Esteva, F.; Godo, L., Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets Syst., 124, 271-288, (2001) · Zbl 0994.03017
[8] Evans, K.; Konikoff, M.; Madden, J. J.; Mathis, R.; Whipple, G., Totally ordered commutative monoids, Semigroup Forum, 62, 249-278, (2001) · Zbl 0974.06009
[9] Fakhruddin, S. M., On the category of S-posets, Acta Sci. Math., 52, 85-92, (1988) · Zbl 0653.06007
[10] Galatos, N.; Jipsen, P.; Kowalski, T.; Ono, H., Residuated lattices. An algebraic glimpse at substructural logics, (2007), Elsevier: Elsevier, Amsterdam · Zbl 1171.03001
[11] Grillet, P. A., Left coset extensions, Semigroup Forum, 7, 200-263, (1974) · Zbl 0296.20032
[12] Grillet, P. A., Semigroups: An Introduction to the Structure Theory, (1995), Marcel Dekker Inc: Marcel Dekker Inc, New York · Zbl 0830.20079
[13] Grillet, P. A., Commutative semigroups, (2001), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht · Zbl 1040.20048
[14] Hájek, P., Metamathematics of Fuzzy Logic, (1998), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht · Zbl 0937.03030
[15] Jenei, S., Structure of left-continuous triangular norms with strong induced negations. I. Rotation construction, J. Appl. Non-Classical Logics, 10, 83-92, (2000) · Zbl 1033.03512
[16] Kilp, M.; Knauer, U.; Mikhalev, A. V., Monoids, acts and categories. With applications to wreath products and graphs, (2000), Walter de Gruyter: Walter de Gruyter, Berlin · Zbl 0945.20036
[17] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms, (2000), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht · Zbl 0972.03002
[18] Leech, J., H-coextensions of monoids, Mem. Amer. Math. Soc., 157, 1-66, (1975) · Zbl 0303.20048
[19] Mesiarová (Zemánková), A., H-transformation of t-norms, Information Sciences, 176, 1531-1545, (2006) · Zbl 1094.03040
[20] Montagna, F.; Noguera, C.; Horčík, R., On weakly cancellative fuzzy logics, J. Log. Comput., 16, 423-450, (2006) · Zbl 1113.03021
[21] Rédei, L., Die Verallgemeinerung der Schreierschen Erweiterungstheorie (in German), Acta Sci. Math. Szeged, 14, 252-273, (1952) · Zbl 0047.26602
[22] Rozenberg, G.; Salomaa, A., Handbook of formal languages, 1, (1997), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0866.68057
[23] Schwarz, Š., O pologrupách splňujúcich zoslabené pravidlá krátenia (On semigroups satisfying weakened forms of the cancellation law, in Slovak), Matematicko-fyzikálny časopis, 6, 149-158, (1956)
[24] Vetterlein, T., Regular left-continuous t-norms, Semigroup Forum, 77, 339-379, (2008) · Zbl 1172.03039
[25] Vetterlein, T., Totally ordered monoids based on triangular norms, Commun. Algebra, 43, 2643-2679, (2015) · Zbl 1329.06007
[26] Vetterlein, T., Real coextensions as a tool for constructing triangular norms, Information Sciences, 348, 357-376, (2016) · Zbl 1398.03199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.