# zbMATH — the first resource for mathematics

Contractive linear preservers of absolutely compatible pairs between $$\mathrm{C}^*$$-algebras. (English) Zbl 1434.46033
Summary: Let $$a$$ and $$b$$ be elements in the closed ball of a unital $$\mathrm{C}^*$$-algebra $$A$$ (if $$A$$ is not unital we consider its natural unitization). We shall say that $$a$$ and $$b$$ are domain (respectively, range) absolutely compatible ($$a\triangle _d b$$, respectively, $$a\triangle _r b$$, in short) if $$\big | |a| -|b| \big | + \big | 1-|a|-|b| \big | =1$$ (respectively, $$\big | |a^*| -|b^*| \big | + \big | 1-|a^*|-|b^*| \big | =1$$), where $$|a|^2= a^* a$$. We shall say that $$a$$ and $$b$$ are absolutely compatible ($$a\triangle b$$ in short) if they are both range and domain absolutely compatible. In general, $$a\triangle _d b$$ (respectively, $$a\triangle _r b$$ and $$a\triangle b$$) is strictly weaker than $$ab^*=0$$ (respectively, $$a^* b =0$$ and $$a\perp b$$). Let $$T: A\rightarrow B$$ be a non-expansive bounded linear mapping between $$\mathrm{C}^*$$-algebras. We prove that, if $$T$$ preserves domain absolutely compatible elements (i.e., $$a\triangle _d b\Rightarrow T(a)\triangle _d T(b)$$), then $$T$$ is a triple homomorphism. A similar statement is proved when $$T$$ preserves range absolutely compatible elements. It is finally shown that $$T$$ is a triple homomorphism if, and only if, $$T$$ preserves absolutely compatible elements.

##### MSC:
 46L05 General theory of $$C^*$$-algebras 47B48 Linear operators on Banach algebras
Full Text:
##### References:
  Akemann, CA; Pedersen, GK, Ideal perturbations of elements in C$$^*$$-algebras, Math. Scand., 41, 117-139, (1977) · Zbl 0377.46049  Barton, TJ; Dang, T.; Horn, G., Normal representations of Banach Jordan triple systems, Proc. Am. Math. Soc., 102, 551-555, (1988) · Zbl 0661.46045  Brešar, M., Jordan mappings of semiprime rings, J. Algebra, 127, 218-228, (1989) · Zbl 0691.16040  Burgos, M.; Fernández-Polo, FJ; Garcés, JJ; Martínez Moreno, J.; Peralta, AM, Orthogonality preservers in C$$^*$$-algebras, JB$$^*$$-algebras and JB$$^*$$-triples, J. Math. Anal. Appl., 348, 220-233, (2008) · Zbl 1156.46045  Burgos, M.; Fernández-Polo, FJ; Garcés, JJ; Peralta, AM, Orthogonality preservers revisited, Asian Eur. J. Math., 2, 387-405, (2009) · Zbl 1207.46061  Burgos, M.; Garcés, JJ; Peralta, AM, Automatic continuity of biorthogonality preservers between compact C$$^*$$-algebras and von Neumann algebras, J. Math. Anal. Appl., 376, 221-230, (2011) · Zbl 1216.47068  Fernández-Polo, FJ; Martínez, J.; Peralta, AM, Geometric characterization of tripotents in real and complex JB$$^*$$-triples, J. Math. Anal. Appl., 295, 435-443, (2004) · Zbl 1058.46033  Fernández-Polo, FJ; Martínez, J.; Peralta, AM, Contractive perturbations in JB$$^*$$-triples, J. Lond. Math. Soc., 85, 349-364, (2012) · Zbl 1244.46034  Fernández-Polo, FJ; Peralta, AM, Partial isometries: a survey, Adv. Oper. Theory, 3, 87-128, (2018) · Zbl 1386.46042  Garcés, JJ; Peralta, AM, Orthogonal forms and orthogonality preservers on real function algebras, Linear Multilinear Algebra, 62, 275-296, (2014) · Zbl 1295.46037  Gardner, LT, Linear maps of C$$^*$$-algebras preserving the absolute value, Proc. Am. Math. Soc., 76, 271-278, (1979) · Zbl 0425.46042  Gardner, LT, A dilation theorem for $$|.|$$-preserving maps of C$$^*$$-algebras, Proc. Am. Math. Soc., 73, 341-345, (1979) · Zbl 0371.46021  Guan, Y.; Wang, C.; Hou, J., Additive maps on C$$^*$$-algebras commuting with $$|\cdot |^k$$ on normal elements, Bull. Iran. Math. Soc., 41, 85-98, (2015) · Zbl 1373.47032  Horn, G., Characterization of the predual and ideal structure of a JBW$$^*$$-triple, Math. Scand., 61, 117-133, (1987) · Zbl 0659.46062  Kadison, RV, Isometries of operator algebras, Ann. Math., 54, 325-338, (1951) · Zbl 0045.06201  Karn, AK, Algebraic orthogonality and commuting projections in operator algebras, Acta Sci. Math. (Szeged), 84, 323-353, (2018) · Zbl 1413.46023  Leung, C-W; Tsai, C-W; Wong, N-C, Linear disjointness preservers of W$$^*$$-algebras, Math. Z., 270, 699-708, (2012) · Zbl 1250.47041  Liu, J-H; Chou, C-Y; Liao, C-J; Wong, N-C, Disjointness preservers of AW$$^*$$-algebras, Linear Algebra Appl., 552, 71-84, (2018) · Zbl 1398.46046  Liu, J-H; Chou, C-Y; Liao, C-J; Wong, N-C, Linear disjointness preservers of operator algebras and related structures, Acta Sci. Math. (Szeged), 84, 277-307, (2018) · Zbl 1413.47063  Molnár, L., Two characterisations of additive $$^*$$-automorphisms of $$B(H)$$, Bull. Austral. Math. Soc., 53, 391-400, (1996) · Zbl 0879.46030  Oikhberg, T.; Peralta, AM, Automatic continuity of orthogonality preservers on a non-commutative $$L^p(\tau )$$ space, J. Funct. Anal., 264, 1848-1872, (2013) · Zbl 1288.47034  Oikhberg, T.; Peralta, AM; Puglisi, D., Automatic continuity of orthogonality or disjointness preserving bijections, Rev. Mat. Complut., 26, 57-88, (2013) · Zbl 1310.46014  Pedersen, G.K.: $$\text{ C }^*$$-Algebras and Their Automorphism Groups. London Mathematical Society Monographs, vol. 14. Academic Press, London (1979) · Zbl 0416.46043  Peralta, AM, Orthogonal forms and orthogonality preservers on real function algebras revisited, Linear Multilinear Algebra, 65, 361-374, (2017) · Zbl 1378.46036  Radjabalipour, M., Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl., 368, 229-241, (2003) · Zbl 1114.47309  Radjabalipour, M.; Seddighui, K.; Taghavi, Y., Additive mappings on operator algebras preserving absolute values, Linear Algebra Appl., 327, 197-206, (2001) · Zbl 0978.15003  Sakai, S.: C$$^*$$-Algebras and $$W^*$$-Algebras. Springer, Berlin (1971) · Zbl 1024.46001  Schweizer, J.: Interplay between noncommutative topology and operators on C$$^*$$-algebras, Ph.D. Dissertation, Eberhard-Karls-Universität, Tübingen, Germany (1997) · Zbl 0878.46050  Taghavi, A., Additive mappings on C$$^*$$-algebras preserving absolute values, Linear Multilinear Algebra, 60, 33-38, (2012) · Zbl 1258.47057  Wolff, M., Disjointness preserving operators in C$$^*$$-algebras, Arch. Math., 62, 248-253, (1994) · Zbl 0803.46069  Wong, N-C, Triple homomorphisms of C$$^*$$-algebras, Southeast Asian Bull. Math., 29, 401-407, (2005) · Zbl 1108.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.