×

zbMATH — the first resource for mathematics

Absence of first order transition in the random crystal field Blume-Capel model on a fully connected graph. (English) Zbl 1357.82033
MSC:
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Harris A B 1974 J. Phys. C: Solid State Phys.7 1671
[2] Imry Y and Wortis M 1978 Phys. Rev. B 19 3580
[3] Aizenman M and Wehr J 1989 Phys. Rev. Lett.62 2503
[4] Hui K and Berker A N 1989 Phys. Rev. Lett.62 2507
[5] Branco N S and Boechat B M 1977 Phys. Rev. B 56 11673
[6] Greenblatt R L, Aizenman M and Lebowitz J L 2009 Phys. Rev. Lett.103 197201
[7] Cardy J 1999 Physica A 263 215
[8] Cardy J and Jacobsen J L 1997 Phys. Rev. Lett.79 4063 · Zbl 0944.82009
[9] Blume M 1966 Phys. Rev.141 517
[10] Capel H W 1967 Physica33 295
[11] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071
[12] Frazer B C, Shirane G, Cox D E and Olsen C E 1966 J. Appl. Phys.37 1386
[13] Buzano C, Cieplak M, Swift M R, Toigo F and Banavar J R 1992 Phys. Rev. Lett.69 221
[14] Buzano C, Maritan A and Pelizzola A 1994 J. Phys.: Condens. Matter6 327
[15] Schupper N and Shnerb N M 2005 Phys. Rev. E 72 046107
[16] Sarkar S and Chakraborty B 2015 Phys. Rev. E 91 042201
[17] Benyoussef A, Biaz T, Saber M and Touzani M 1987 J. Phys. C: Solid State Phys.20 5349
[18] Albayrak E 2013 Physica A 392 552
[19] Yuksel Y, Akinci U and Polat H 2012 Physica A 391 2819
[20] Albayrak E 2011 Physica A 390 1529
[21] Lara D P 2012 Rev. Mex. Fiscia58 203
[22] Snowman D P 2009 Phys. Rev. E 79 041126
[23] Santos P V, de Costa F A and de Araujo J M 2015 Phys. Lett. A 379 1397 · Zbl 1349.82026
[24] Kaneyoshi T and Mieinick J 1990 J. Phys.: Condens. Matter2 8773
[25] Zierenberg J, Fytas N G and Janke W 2015 Phys. Rev. E 91 032126
[26] Fernandez L A, Guerrero A G, Martin-Mayor V and Ruiz Lorenzo J J 2008 Phys. Rev. Lett.100 057201
[27] Fytas N G and Malakis A 2011 Eur. Phys. J. B 79 13
[28] Malakis A and Fytas N G 2006 Phys. Rev. E 73 016109
[29] Touchette H 2009 Phys. Rep.478 1
[30] Ellis R S, Otto P T and Touchette H 2005 Ann. Appl. Probab.15 2203-54 · Zbl 1113.82017
[31] Barre J, Mukamel D and Ruffo S 2001 Phys. Rev. Lett.87 030601
[32] Sumedha and Singh S K 2016 Physica A 442 276 · Zbl 1400.81209
[33] Lowe M, Meiners R and Torres F 2013 J. Phys. A: Math. Theor.46 125004 · Zbl 1267.82137
[34] den Hollander F 2000 Theorem III.17 Large Deviations(Fields Institute Monographs) (Providence, RI: American Mathematical Society)
[35] Huang K (ed) 1987 Introduction to Statistical Mechanics 2nd edn (New York: Wiley)
[36] Bahmad L, Benyoussef A and El Kenz A 2007 Phys. Rev. B 76 094412
[37] Falicov A and Berker A N 1996 Phys. Rev. Lett.76 4380
[38] Malakis A, Nihat Berker A, Fytas N G and Papakonstantinou T 2012 Phys. Rev. E 85 061106
[39] Bellafard A, Chakravarty S, Troyer M and Katzgraber H G 2015 Ann. Phys.357 66
[40] Zhu Q, Wan X, Naryanan R, Hoyos J A and Vojta T 2015 Phys. Rev. B 91 224201
[41] Imrahim A K and Vojta T 2016 arXiv:1602.04508
[42] den Hollander F 2000 Theorem III.13 Large Deviations(Fields Institute Monographs) (Providence, RI: American Mathematical Society)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.