zbMATH — the first resource for mathematics

A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. (English) Zbl 1439.70011
Summary: In generic flexible multibody interaction problems, the differences in the mass, damping and stiffness of the bodies can be very large. Of particular interest is a small change in the higher mass structure which triggers relatively large inertial effects on the lower mass structure. In this work, a new partitioned staggered time integration scheme is developed and its applicability is extended to the problems involving low mass ratios in coupled multibody problems. The equation of motion of body with larger inertia is integrated by implicit Newmark method, whereas the smaller inertia is solved using a robust self-starting explicit integration procedure. The coupled formulation includes explicit correction terms that adjusts the amount of interfacial velocity, which plays a key role in the stability and accuracy of the simulations. A wide range of mass (\(10^{-6}\)–\(10^{-1}\)), damping and stiffness (\(10^{-3}\)–\(10^3\)) ratios are chosen to assess the stability and accuracy characteristics of the proposed scheme. The closed-form expressions for the coupling parameter have been constructed for both matching and non-matching time stepping through the Godunov-Ryabenkii normal mode analysis. The stability of the proposed method is observed as a function of the relative properties and temporal discretisation of the coupled system. The time step of the heavier body significantly influences the stability more than the lighter body. To maintain the staggering error minimal, an optimal range of the coupling parameter is identified. The error computed with uniform variation in the time step revealed that the present method is more accurate than the existing methods. The partitioned method is an energy preserving integration method for the dynamic analysis of multibody systems. As a potential application of this scheme, flexible multibody problems in the field of offshore engineering, viz., wave energy converter and floater-mooring systems are presented and validated with experimental measurements.
70E55 Dynamics of multibody systems
65L05 Numerical methods for initial value problems
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI
[1] Felippa, C. A.; Park, K. C.; Farhat, C., Partitioned analysis of coupled systems, (CIMNE:International Center for Numerical Methods in Engineering (1998), Barcelona: Barcelona Spain) · Zbl 0985.76075
[2] Felippa, C. A.; Park, K. C., Staggered transient analysis procedures for coupled mechanical systems: Formulation, Comput. Methods Appl. Mech. Engrg., 24, 1, 61-111 (1980) · Zbl 0453.73091
[3] Roe, B.; Jaiman, R.; Haselbacher, A.; Geubelle, P. H., Combined interface boundary condition method for coupled thermal simulations, Internat. J. Numer. Methods Fluids, 57, 3, 329-354 (2008) · Zbl 1241.80009
[4] Alonso, J.; Martinelli, L.; Jameson, A., Multigrid unsteady Navier-Stokes calculations with aeroelastic applications, AIAA J. (1995), pages 95-0048
[5] Matthies, H. G.; Niekamp, R.; Steindorf, J., Algorithms for strong coupling procedures, Comput. Methods Appl. Mech. Engrg., 195, 17-18, 2028-2049 (2006), Fluid-Structure Interaction · Zbl 1142.74050
[6] Ahn, H. T.; Kallinderis, Y., Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes, J. Comput. Phys., 219, 2, 671-696 (2006) · Zbl 1189.74035
[7] Dettmer, W.; Peric, D., A computational framework for fluid-structure interaction: Finite element formulation and applications, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5754-5779 (2006) · Zbl 1155.76354
[8] Guruswamy, G. P., Unsteady aerodynamic and aerostatic calculations for wings using Euler equations, AIAA J., 28, 461-469 (1990)
[9] Schulz, K. W.; Kallinderis, Y., Unsteady flow structure interaction for incompressible flows using deformable hybrid grids, J. Comput. Phys., 143, 2, 569-597 (1998) · Zbl 0935.76052
[10] Jan, Y. J.; Sheu, W. H.T., Finite element analysis of vortex shedding oscillations from cylinders in the straight channel, Comput. Mech., 33, 2, 81-94 (2004) · Zbl 1067.76569
[11] Blom, F. J., A monolithical fluid-structure interaction algorithm applied to the piston problem, Comput. Methods Appl. Mech. Engrg., 167, 3-4, 369-391 (1998) · Zbl 0948.76046
[12] Piperno, S.; Farhat, C., Partitioned procedures for the transient solution of coupled aeroelastic problems—Part II: Energy transfer analysis and three-dimensional applications, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3147-3170 (2001), Advances in Computational Methods for Fluid-Structure Interaction · Zbl 1015.74009
[13] Michler, C.; van Brummelen, E. H.; Hulshoff, S. J.; de Borst, R., The relevance of conservation for stability and accuracy of numerical methods for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 192, 37-38, 4195-4215 (2003) · Zbl 1181.74156
[14] Kuhl, E.; Hulshoff, S.; de Borst, R., An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena, Internat. J. Numer. Methods Engrg., 57, 1, 117-142 (2003) · Zbl 1062.74617
[15] Jaiman, R. K.; Geubelle, P. H.; Loth, E.; Jiao, X., Stable and accurate loosely-coupled scheme for unsteady fluid-structure interaction, (AIAA Aerospace Sciences Meeting and Exhibit (2007))
[16] Jaiman, R. K.; Shakib, F.; Oakley, O. H.; Constantinides, Y., Fully coupled fluid-structure interaction for offshore applications, (Proceedings of the 28th International Conference on Offshore Mechanics and Arctic Engineering (2009), Honolulu: Honolulu HI)
[17] Jaiman, R.; Geubelle, P.; Loth, E.; Jiao, X., Combined interface boundary condition method for unsteady fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 27-39 (2011) · Zbl 1225.74091
[18] Jaiman, R.; Geubelle, P.; Loth, E.; Jiao, X., Transient fluid-structure interaction with non-matching spatial and temporal discretizations, Comput. & Fluids, 50, 1, 120-135 (2011) · Zbl 1271.76242
[20] He, T.; Zhou, D.; Bao, Y., Combined interface boundary condition method for fluid-rigid body interaction, Comput. Methods Appl. Mech. Engrg., 223-224, 81-102 (2012) · Zbl 1253.74034
[21] He, T.; Zhou, D.; Han, Z.; Tu, J.; Ma, J., Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method, Int. J. Comput. Fluid Dyn., 28, 6-10, 272-300 (2014)
[22] He, T., A partitioned implicit strongly coupling strategy for imcompressible flow past an oscillating cylinder, Int. J. Comput. Methods, 12, Article 1550012 pp. (2015) · Zbl 1359.76080
[23] Dettmer, W. G.; Peric, D., A new staggered scheme for fluid-structure interaction, Internat. J. Numer. Methods Engrg., 93, 1, 1-22 (2013) · Zbl 1352.74471
[24] Bauchau, O. A., A self-stabilized algorithm for enforcing constraints in multibody systems, Int. J. Solids Struct., 40, 13-14, 3253-3271 (2003) · Zbl 1038.70006
[25] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, J. Comput. Phys., 269, 108-137 (2014) · Zbl 1349.74373
[26] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells, J. Comput. Phys., 268, 399-416 (2014) · Zbl 1349.74372
[27] Liu, J.; Jaiman, R. K.; Gurugubelli, P. S., A stable second-order scheme for fluid-structure interaction with strong added-mass effects, J. Comput. Phys., 270, 687-710 (2014) · Zbl 1349.76236
[28] Bukac, M.; Canic, S.; Glowinski, R.; Tambaca, J.; Quaini, A., Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys., 235, 515-541 (2013)
[29] Bukac, M.; Canic, S., Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation, Math. Biosci. Eng., 10, 258-388 (2013) · Zbl 1259.35203
[30] Bukac, M.; Canic, S.; Muha, B., A partitioned scheme for fluid-composite structure interaction problems, J. Comput. Phys., 281, 493-517 (2015) · Zbl 1351.76321
[31] Fernandez, M. A., Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid, C. R. Math., 349, 7-8, 473-477 (2011) · Zbl 1344.76026
[32] Fernandez, M. A.; Mullaert, J., Displacement-velocity correction schemes for incompressible fluid-structure interaction, C. R. Math., 349, 17-18, 1011-1015 (2011) · Zbl 1368.76021
[33] Fernandez, M. A., Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numer. Math., 123, 1, 21-65 (2012) · Zbl 1331.76068
[34] Nakshatrala, K. B.; Hjelmstad, K. D.; Tortorelli, D. A., A FETI-based domain decomposition technique for time-dependent first-order systems based on a DAE approach, Internat. J. Numer. Methods Engrg., 75, 12, 1385-1415 (2008) · Zbl 1162.65387
[36] Zhen, F.; Chen, Z.; Zhang, J., Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method, IEEE Trans. Microw. Theory Tech., 48, 9, 1550-1558 (2000)
[37] Zhang, Q.; Dasgupta, A.; Haswell, P., Partitioned viscoplastic-constitutive properties of the Pb-free Sn3.9Ag0.6Cu solder, J. Electron. Mater., 33, 11, 1338-1349 (2004)
[38] Zhang, K.; Hopperstad, O. S.; Holmedal, B.; Dumoulin, S., A robust and efficient substepping scheme for the explicit numerical integration of a rate-dependent crystal plasticity model: adaptive substepping scheme for rate-dependent crystal plasticity, Internat. J. Numer. Methods Engrg., 99, 4, 239-262 (2014) · Zbl 1352.74062
[39] Bonelli, A.; Bursi, O. S.; He, L.; Magonette, G.; Pegon, P., Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring, Internat. J. Numer. Methods Engrg., 75, 7, 800-825 (2008) · Zbl 1195.74062
[40] Mian, Haris Hameed; Wang, Gang; Ye, Zheng-Yin, Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupled approach, J. Fluids Struct., 49, 186-201 (2014)
[41] Lindsay, P.; Parks, M. L.; Prakash, A., Enabling fast, stable and accurate peridynamic computations using multi-time-stepintegration, Comput. Methods Appl. Mech. Engrg., 306, 382-405 (2016)
[42] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[43] Cavaglieri, D.; Bewley, T., Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems, J. Comput. Phys., 286, 172-193 (2015) · Zbl 1352.65176
[44] Faragó, I.; Izsák, F.; Szabó, T.; Kriston, Á., An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model, Cent. Eur. J. Math., 11, 4, 746-759 (2013) · Zbl 1269.65079
[45] Koto, T., IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math., 215, 1, 182-195 (2008) · Zbl 1141.65072
[46] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[47] Lens, E. V.; Cardona, A.; Géradin, M., Energy preserving time integration for constrained multibody systems, Multibody Syst. Dyn., 11, 1, 41-61 (2004) · Zbl 1046.70003
[48] Tamma, K. K.; Namburu, R. R., A robust self-starting explicit computational methodology for structural dynamic applications: Architecture and representations, Internat. J. Numer. Methods Engrg., 29, 7, 1441-1454 (1990)
[49] Dahlquist, G., A special stability problem for linear multistep methods, BIT, 3, 27-43 (1963) · Zbl 0123.11703
[50] Farhat, C.; van der Zee, K. G.; Geuzaine, P., Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput. Methods Appl. Mech. Engrg., 195, 17-18, 1973-2001 (2006) · Zbl 1178.76259
[51] Felippa, C. A.; Park, K. C.; Farhat, Charbel, Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3247-3270 (2001) · Zbl 0985.76075
[52] Godunov, S. K.; Ryabenkii, V. S., The Theory of Difference Schemes: An Introduction (1964), Wiley: Wiley Amsterdam, North Holland
[53] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), Wiley-Interscience: Wiley-Interscience New York · Zbl 0155.47502
[54] van Zuijlen, A. H.; Bijl, H., Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations, Comput. Struct., 83, 2-3, 93-105 (2005), Advances in Analysis of Fluid Structure InteractionAdvances in Analysis of Fluid Structure Interaction
[55] Newmark, N. M., A method of computation for structural dynamics, J. Engrg. Mech., 85, 67-94 (1959)
[56] Lejerskog, E.; Bostrom, C.; Hai, L.; Waters, R.; Leijon, M., Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site, Renew. Energy, 77, 9-14 (2015)
[57] Eriksson, M.; Isberg, J.; Leijon, M., Theory and experiment on an elastically moored cylindrical buoy, IEEE J. Ocean. Eng., 31, 4, 959-963 (2006)
[58] Bhatta, D. D.; Rahman, M., On scattering and radiation problem for a cylinder in water of finite depth, Internat. J. Engrg. Sci., 41, 9, 931-967 (2003) · Zbl 1211.76021
[59] Kim, M. H.; Ran, Z.; Zheng, W., Hull/mooring coupled dynamic analysis of a truss spar in time domain, Int. J. Offshore Polar Eng., 11, 1, 42-54 (2001)
[60] Cao, P., Slow motion responses of compliant offshore structures (1996), Texas AM University: Texas AM University USA, (MS thesis)
[61] Chakrabarti, S. K., Hydrodynamics of Offshore Structures (2012), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[62] Berthelsen, P. A., Dynamic response analysis of a truss spar in waves (2000), University of Newcastle: University of Newcastle Australia, (MS thesis)
[63] Montasir, O. A., Numerical and experimental studies on the slow drift motions and the mooring line responses of truss spar platforms (2012), Universiti Teknologi PETRONAS: Universiti Teknologi PETRONAS Malaysia, (Ph.D. thesis)
[64] Montasir, O. A.; Yenduri, A.; Kurian, V. J., Effect of mooring line configurations on the dynamic responses of truss spar platforms, Ocean Eng., 96, 161-172 (2015)
[65] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations (1998), SIAM: SIAM Philadelphia · Zbl 0908.65055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.