zbMATH — the first resource for mathematics

Industrial application of RANS modelling: capabilities and needs. (English) Zbl 1184.76718
Summary: This article focuses on the current capabilities of Reynolds-Averaged Navier-Stokes (RANS) turbulence modelling and its application to industrial flows. The experiences discussed here are the culmination of over 15 years of commercial application of the Galerkin/least-squares finite element method and RANS turbulence modelling approach. The objective of this article is to provide a brief review of turbulence modelling, then illustrate how industrial users are successfully leveraging RANS techniques in production environments. Applications of increasing complexity involving adverse pressure gradients, separation and complex 3-D systems are presented to illustrate the strengths of RANS and unsteady RANS (URANS) modelling. Results are also presented to draw attention to some of the limitations of RANS technology for industrial applications of specific interest. Finally, motivation for continuing research in the field of RANS modelling is provided.

76M10 Finite element methods applied to problems in fluid mechanics
76F99 Turbulence
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
Full Text: DOI
[1] Batten P., AIAA 2002–0427 CP (2002)
[2] DOI: 10.1002/fld.445 · Zbl 1025.76013 · doi:10.1002/fld.445
[3] DOI: 10.1017/S0022112083002189 · doi:10.1017/S0022112083002189
[4] Carati D. Jansen K. Lund T.Center for turbulence research annual research briefs1995 35 40 Stanford University/NASA Ames Research Center, Center for Turbulence Research
[5] Constantinides Y., Offshore Mechanics and Arctic Engineering OMAE2006-92334 (2006)
[6] Constantinides Y., Offshore Mechanics and Arctic Engineering OMAE2007-29151 CP (2007)
[7] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[8] Girimaji, D., Sreenivasan, R. and Jeong, E. PANS turbulence model for seamless transition between RANS, LES: fixed-point analysis and preliminary results. Proceedings of ASME FEDSM’03 2003 4th ASME-JSME Joint Fluids Engineering Conference. Honolulu, HI, USA.
[9] Greenblatt, D.A separation control CFD validation test case part 1: baseline and steady suction. 2nd AIAA Flow Control Conference. Portland, Oregon.
[10] Holmes S., Offshore Mechanics and Arctic Engineering OMAE2008-57434 CP (2008)
[11] DOI: 10.1007/s007910050051 · Zbl 0998.76040 · doi:10.1007/s007910050051
[12] DOI: 10.1016/0045-7825(89)90111-4 · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[13] DOI: 10.1016/S0045-7825(00)00203-6 · Zbl 0973.76048 · doi:10.1016/S0045-7825(00)00203-6
[14] Langtry R., A correlation-based transition model using local variables for unstructured parallelized CFD Codes (2006)
[15] Langtry R., AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-395 (2006)
[16] Langtry R., AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-522 (2005)
[17] Lyons, D. Assessment of DES models for separated flow from a hump in a turbulent boundary layer. Proceedings of the Joint ASME/JSME Fluids Engineering Conference FEDSM 2007-37298. San Diego, CA, USA.
[18] Menter F., AIAA 2003-0767 CP (2003)
[19] Moin P., AIAA 84-0174 CP (1984)
[20] DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[21] Oakley O., Offshore Mechanics and Arctic Engineering OMAE2005-67238 (2005)
[22] Pope S, Turbulent Flows, 2. ed. (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[23] DOI: 10.1017/S0022112074000322 · doi:10.1017/S0022112074000322
[24] DOI: 10.1016/0045-7825(91)90041-4 · doi:10.1016/0045-7825(91)90041-4
[25] DOI: 10.2514/1.9694 · doi:10.2514/1.9694
[26] DOI: 10.2172/12144 · doi:10.2172/12144
[27] Slimon, S. Computation of internal separated flows using a zonal detached eddy simulation approach. Proceedings of the 2003 ASME International Mechanical Engineering Congress. Washington, D.C., USA.
[28] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[29] DOI: 10.1016/S0142-727X(00)00007-2 · doi:10.1016/S0142-727X(00)00007-2
[30] DOI: 10.1007/s00162-006-0015-0 · Zbl 1112.76370 · doi:10.1007/s00162-006-0015-0
[31] Spalart P., Advances in DNS/LES pp 137– (1997)
[32] Spalart P., AIAA 92-0439 CP (1992)
[33] DOI: 10.1017/S0022112092000752 · doi:10.1017/S0022112092000752
[34] Vaz G., Offshore Mechanics and Arctic Engineering OMAE2007-29275 (2007)
[35] DOI: 10.1006/jfls.1993.1014 · doi:10.1006/jfls.1993.1014
[36] Wilcox D, Turbulence Modelling for CFD, 2. ed. (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.