×

zbMATH — the first resource for mathematics

Stability analysis of passive suppression for vortex-induced vibration. (English) Zbl 07154415
Summary: In this paper, we present a stability analysis of passive suppression devices for the vortex-induced vibration (VIV) in the laminar flow condition. A data-driven model reduction approach based on the eigensystem realization algorithm is used to construct a reduced-order model in a state-space format. From the stability analysis of the coupled system, two modes are found to be dominant in the phenomenon of self-sustained VIV: namely, the wake mode, with frequency close to that of the wake flow behind a stationary cylinder; and the structure mode, with frequency close to the natural frequency of the elastically mounted cylinder. The present study illustrates that VIV can be suppressed by altering the structure mode via shifting of the eigenvalues from the unstable to the stable region. This finding is realized through the simulations of passive control devices, such as fairings and connected-C devices, wherein the presence of appendages breaks the self-sustenance of the wake-body interaction cycle. A detailed proper orthogonal decomposition analysis is employed to quantify the effect of a fairing on the complex interaction between the wake features. From the assessment of the stability characteristics of appendages, the behaviour of a connected-C device is found to be similar to that of a fairing, and the trajectories of the eigenspectrum are nearly identical, while the eigenspectrum of the cylinder-splitter arrangement indicates a galloping behaviour at higher reduced velocities. Finally, we introduce a stability function to characterize the influence of geometric parameters on VIV suppression.
MSC:
76 Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, D. W., Lee, L., Henning, D.et al.2008Fairings versus helical strakes for suppression of vortex-induced vibration: technical comparisons. In Offshore Technology Conference. .
[2] Baarholm, R., Skaugset, K., Lie, H. & Braaten, H.2015Experimental studies of hydrodynamic properties and screening of riser fairing concepts for deep water applications. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, p. V002T08A054. American Society of Mechanical Engineers.
[3] Bearman, P. W.2011Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct.27 (5), 648-658.
[4] Blevins, R. D. & Scanlan, R. H.1977Flow-induced vibration. Trans. ASME J. Appl. Mech.44, 802.
[5] Chen, M., Liu, X., Liu, F. & Lou, M.2018 Optimal design of two-dimensional riser fairings for vortex-induced vibration suppression based on genetic algorithm. .
[6] Donea, J.1983Arbitrary Lagrangian-Eulerian finite element methods. In Computational Methods for Transient Analysis, pp. 474-516. North-Holland. · Zbl 0536.73062
[7] Flinois, T. L. B. & Morgans, A. S.2016Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J. Fluid Mech.793, 41-78. · Zbl 1382.76076
[8] Flinois, T. L. B., Morgans, A. S. & Schmid, P. J.2015Projection-free approximate balanced truncation of large unstable systems. Phys. Rev. E92 (2), 023012.
[9] Jaiman, R., Geubelle, P., Loth, E. & Jiao, X.2011Transient fluid-structure interaction with non-matching spatial and temporal discretizations. Comput. Fluids50 (1), 120-135. · Zbl 1271.76242
[10] Jaiman, R. K., Guan, M. Z. & Miyanawala, T. P.2016aPartitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number. Comput. Fluids133, 68-89. · Zbl 1390.76056
[11] Jaiman, R. K., Pillalamarri, N. R. & Guan, M. Z.2016bA stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput. Meth. Appl. Mech. Engng301, 187-215. · Zbl 1425.74156
[12] Juang, J.-N. & Pappa, R. S.1985An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid.8 (5), 620-627. · Zbl 0589.93008
[13] Khalak, A. & Williamson, C. H. K.1999Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct.13 (7-8), 813-851.
[14] Kim, H. & Chang, K.1995Numerical study on vortex shedding from a circular cylinder influenced by a nearby control wire. Comput. Fluid Dyn. J.4, 151-164.
[15] Kuhl, E., Askes, H. & Steinmann, P.2004An ale formulation based on spatial and material settings of continuum mechanics. Part 1. Generic hyperelastic formulation. Comput. Meth. Appl. Mech. Engng193 (39), 4207-4222. · Zbl 1068.74078
[16] Law, Y. Z. & Jaiman, R. K.2017Wake stabilization mechanism of low-drag suppression devices for vortex-induced vibration. J. Fluids Struct.70, 428-449.
[17] Liu, B. & Jaiman, R. K.2016Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement. Phys. Fluids28 (12), 127103.
[18] Liu, J., Jaiman, R. K. & Gurugubelli, P. S.2014A stable second-order scheme for fluid-structure interaction with strong added-mass effects. J. Comput. Phys.270, 687-710. · Zbl 1349.76236
[19] Ma, Z., Ahuja, S. & Rowley, C. W.2011Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn.25 (1), 233-247. · Zbl 1272.76103
[20] Marquet, O., Sipp, D. & Jacquin, L.2008Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech.615, 221-252. · Zbl 1165.76012
[21] Meliga, P. & Chomaz, J.-M.2011An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech.671, 137-167. · Zbl 1225.76088
[22] Mittal, S. & Raghuvanshi, A.2001Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers. Intl J. Numer. Meth. Fluids35 (4), 421-447. · Zbl 1013.76049
[23] Miyanawala, T. P. & Jaiman, R. K.2019Decomposition of wake dynamics in fluid-structure interaction via low-dimensional models. J. Fluid Mech.867, 723-764. · Zbl 1430.76093
[24] Mysa, R. C., Kaboudian, A. & Jaiman, R. K.2016On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number. J. Fluids Struct.61, 76-98.
[25] Rowley, C. W. & Dawson, S. T. M.2017Model reduction for flow analysis and control. Annu. Rev. Fluid Mech.49, 387-417. · Zbl 1359.76111
[26] Sirovich, L.1987Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths45 (3), 561-571. · Zbl 0676.76047
[27] Taira, K., Brunton, S. L., Dawson, S., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S.2017Modal analysis of fluid flows: an overview. AIAA J.55 (12), 4013-4041.
[28] Yao, W. & Jaiman, R. K.2017aFeedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. J. Fluid Mech.827, 394-414. · Zbl 07135858
[29] Yao, W. & Jaiman, R. K.2017bModel reduction and mechanism for the vortex-induced vibrations of bluff bodies. J. Fluid Mech.827, 357-393. · Zbl 07135857
[30] Zhang, W., Li, X., Ye, Z. & Jiang, Y.2015Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers. J. Fluid Mech.783, 72-102. · Zbl 1382.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.