×

Dynamical properties of autoimmune disease models: tolerance, flare-up, dormancy. (English) Zbl 1451.92096

Summary: The mechanisms of autoimmune disease have remained puzzling for a long time. Here we construct a simple mathematical model for autoimmune disease based on the personal immune response function and the target cell growth function. We show that these two functions are sufficient to capture the essence of autoimmune disease and can explain characteristic symptom phases such as tolerance, repeated flare-ups and dormancy. Our results strongly suggest that a more complete understanding of these two functions will underlie the development of an effective therapy for autoimmune disease.

MSC:

92C32 Pathology, pathophysiology
34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderton, S. M., Avoiding autoimmune disease-T cells know their limits, Trends Immunol., 27, 208-214 (2006)
[2] Baum, H.; Davies, H.; Peakman, M., Molecular mimicry in the MHC: hidden clues to autoimmunity?, Immunol. Today, 17, 64-70 (1996)
[3] Borghans, J. A.M.; de Boer, R. J.; Sercarz, E.; Kumar, V., T cell vaccination in experimental autoimmune encephalomyelitis: a mathematical model, J. Immunol., 161, 1087-1093 (1998)
[4] de Boer, R. J., Theoretical Biology (2005), Utrecht University
[5] de Boer, R. J., Modeling Population Dynamics: A Graphical Approach. Theoretical Biology (2006), Utrecht University
[6] de Boer, R. J.; Perelson, A. S.; Kevrekidis, I. G., Immune network behavior—I. From stationary state to limit cycle oscillations, Bull. Math. Biol., 55, 745-780 (1993) · Zbl 0797.92014
[7] Fehervari, Z., Sakaguchi, S., 2006. Peacekeepers of the immune system. Sci. Am. 56-63.
[8] Fujinami, R. S., Viruses and autoimmune disease-two sides of the same coin?, Trends Microbiol., 9, 377-381 (2001)
[9] Fujinami, R.S., 2004. Autoimmunity. Encyclopedia Virol. 108-112.
[10] Horwitz, M. S.; Sarvetnick, N., Viruses, host responses, and autoimmunity, Immunol. Rev., 169, 241-253 (1999)
[11] Janewa, C.; Travers, P.; Walport, M.; Shlomchik, M. J., Immunobiology: The Immune System in Health and Disease (2004), Garland Publishing: Garland Publishing New York
[12] De Leenheer, P.; Smith, H. L., Virus dynamics: a global analysis, SIAM J. Appl. Math., 63, 1313-1327 (2003) · Zbl 1035.34045
[13] Murase, A.; Sasaki, T.; Kajiwara, T., Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51, 247-267 (2005) · Zbl 1086.92029
[14] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[15] Nowak, M. A.; May, R. M., Virus Dynamics (2000), Oxford University Press: Oxford University Press Oxford · Zbl 1101.92028
[16] Pasare, C., Medzhitov, R., 2003. Toll pathway-dependent blockade of \(\operatorname{CD} 4^+ \operatorname{CD} 25^+\) T cell-mediated suppression by dendritic cells. Science 1033-1036.
[17] Pender, M. P., Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases, Trends Immunol., 24, 584-588 (2003)
[18] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1998) · Zbl 1078.92502
[19] Roitt, I., Male, D., Brostoff, J., 1998. Immunology. Mosby.
[20] Tanaka, S., Sakaguchi, S., 2005. Regulatory T cell and autoimmune disease. Jpn. J. Clin. Immunol. 291-299.
[21] Ulaeto, D.; Lacy, P. E.; Kipnis, D. M.; Kanagawa, O.; Unanue, E. R., A T-cell dormant state in the autoimmune process of nonobese diabetic mice treated with complete Freund’s adjuvant, Proc. Natl Acad. Sci. USA, 89, 3927-3931 (1992)
[22] von Herrath, M. G.; Oldstone, M. B.A., Role of viruses in the loss of tolerance to self-antigens and in autoimmune diseases, Trends Microbiol., 3, 424-430 (1995)
[23] von Herrath, M. G.; Oldstone, M. B.A., Virus-induced autoimmune disease, Curr. Opin. Immunol., 8, 878-885 (1996)
[24] Wodarz, D.; Jansen, V. A., A dynamical perspective of CTL cross-priming and regulation: implications for cancer immunology, Immunol. Lett., 86, 213-227 (2003)
[25] Wang, L.; Li, M. Y., Mathematical analysis of the global dynamics of a model for HIV infection with \(\operatorname{CD} 4 +\) T cells, Math. Biosci., 200, 44-57 (2006) · Zbl 1086.92035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.