zbMATH — the first resource for mathematics

On some topological properties of Fourier transforms of regular holonomic \(\mathcal{D}\)-modules. (English) Zbl 1439.32025
Summary: We study Fourier transforms of regular holonomic \(\mathcal{D}\)-modules. In particular, we show that their solution complexes are monodromic. An application to direct images of some irregular holonomic \(\mathcal{D}\)-modules will be given. Moreover, we give a new proof of the classical theorem of Brylinski and improve it by showing its converse.
32C38 Sheaves of differential operators and their modules, \(D\)-modules
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
Full Text: DOI
[1] Bloch, S. and Esnault, H., Local Fourier transforms and rigidity for D-modules. Asian J. Math.8(2004), 587-605. · Zbl 1082.14506
[2] Brylinski, J.-L., Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque140-141(1986), 3-134, 251. · Zbl 0624.32009
[3] D’Agnolo, A., Hien, M., Morando, G., and Sabbah, C., Topological computation of some Stokes phenomena on the affine line. Ann. Inst. Fourier, to appear.
[4] D’Agnolo, A. and Kashiwara, M., Riemann-Hilbert correspondence for holonomic D-modules. Publ. Math. Inst. Hautes Études Sci.123(2016), 69-197.
[5] D’Agnolo, A. and Kashiwara, M., A microlocal approach to the enhanced Fourier-Sato transform in dimension one. Adv. Math.339(2018), 1-59. · Zbl 1410.32007
[6] Daia, L., La transformation de Fourier pour les D-modules. Ann. Inst. Fourier50(2001), no. 6, 1891-1944. · Zbl 0963.35002
[7] Heizinger, H., Stokes structure and direct image of irregular singular D-modules. 2015. arxiv:1506.05959v1 · Zbl 1320.32016
[8] Hien, M. and Roucairol, C., Integral representations for solutions of exponential Gauss-Manin systems. Bull. Soc. Math. France136(2008), 505-532. · Zbl 1171.32019
[9] Hotta, R., Takeuchi, K., and Tanisaki, T., D-modules, perverse sheaves, and representation theory. , Birkhäuser Boston, Boston, MA, 2008. · Zbl 1136.14009
[10] Ito, Y. and Takeuchi, K., On irregularities of Fourier transforms of regular holonomic D-Modules. 2018. arxiv:1801.07444v17
[11] Kashiwara, M. and Schapira, P., Sheaves on manifolds. , Springer-Verlag, Berlin, 1990. · Zbl 0709.18001
[12] Kashiwara, M. and Schapira, P., Ind-sheaves. Astérisque271(2001), 1-136. · Zbl 0993.32009
[13] Kashiwara, M. and Schapira, P., Categories and sheaves. , Springer-Verlag, Berlin, 2006. · Zbl 1118.18001
[14] Kashiwara, M. and Schapira, P., Irregular holonomic kernels and Laplace transform. Selecta Math.22(2016), 55-109. · Zbl 1337.32020
[15] Kashiwara, M. and Schapira, P., Regular and irregular holonomic D-modules. , Cambridge University Press, Cambridge, 2016. · Zbl 1354.32008
[16] Katz, N. S M. and Laumon, G., Transformation de Fourier et majoration de sommes exponentielles. Inst. Hautes Études Sci. Publ. Math.62(1985), 361-418. · Zbl 0603.14015
[17] Malgrange, B., Transformation de Fourier géometrique. Séminaire Bourbaki, Vol. 1987/88. Astérisque 161-162(1989), no. 692, 4, 133-150.
[18] Mochizuki, T., Note on the Stokes structure of Fourier transform. Acta Math. Vietnam35(2010), 107-158. · Zbl 1201.32016
[19] Mochizuki, T., Stokes shells and Fourier transforms. 2018. arxiv:1808.01037v1
[20] Prelli, L., Conic sheaves on subanalytic sites and laplace transform. Rend. Semin. Mat. Univ. Padova125(2011), 173-206. · Zbl 1239.32009
[21] Roucairol, C., Irregularity of an analogue of the Gauss-Manin systems. Bull. Soc. Math. France134(2006), 269-286. · Zbl 1122.32019
[22] Roucairol, C., Formal structure of direct image of holonomic D-modules of exponential type. Manuscripta Math.124(2007), 299-318. · Zbl 1140.32021
[23] Sabbah, C., Hypergeometric periods for a tame polynomial. Port. Math.63(2006), 173-226. · Zbl 1113.14011
[24] Sabbah, C., An explicit stationary phase formula for the local formal Fourier-Laplace transform. In: Singularities I, , Amer. Math. Soc., Providence, RI, 2008, pp. 309-330. · Zbl 1162.32018
[25] Tamarkin, D., Microlocal condition for non-displaceability. In: Algebraic and Analytic Microlocal Analysis, AAMA 2013, , Springer, Cham, 2018, pp. 99-223. · Zbl 1416.35019
[26] Verdier, J.-L., Spécialisation de faisceaux et monodromie modérée. In: Analysis and topology on singular spaces, II, III (Luminy, 1981), , Soc. Math. France, Paris, 1983, pp. 332-364. · Zbl 0532.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.