×

zbMATH — the first resource for mathematics

\(p\)-adic probability logics. (English) Zbl 1353.03013
Summary: This paper represents an comprehensive overview of the results from three papers where we developed several propositional logics for reasoning about \(p\)-adic valued probability. Each of these logics is a sound, complete and decidable extension of classical propositional logic.

MSC:
03B48 Probability and inductive logic
03B25 Decidability of theories and sets of sentences
03B42 Logics of knowledge and belief (including belief change)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. M. Robert, A Course in p-Adic Analysis (Springer, 2000). · Zbl 0947.11035
[2] Albeverio, S.; Khrennikov, A. Yu., Representation of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions, J. Phys. A, 29, 5515-5527, (1996) · Zbl 0903.46073
[3] Albeverio, S.; Cianci, R.; Khrennikov, A. Yu., A representation of quantum field Hamiltonians in a p-adic Hilbert space, Theor. Math. Phys., 112, 355-374, (1997) · Zbl 0968.46519
[4] Albeverio, S.; Khrennikov, A. Yu.; Kloeden, P. E., Memory retieval as p-adic dynamical system, BioSystems, 49, 105-115, (1999)
[5] Aref’eva, I. Ya.; Dragovich, B.; Frampton, P. H.; Volovich, I. V., The vave function of the universe and p-adic gravity, Int. J. Mod. Phys. A, 6, 4341-4358, (1991) · Zbl 0733.53039
[6] Dragovich, B.; Dragovich, A., P-adic modeling of the genome and the genetic code, Computer J., 53, 432-442, (2010) · Zbl 1256.81088
[7] G. Bachman, “Introduction to p-adic numbers and valuation theory,” Polytechnic Institute of Brooklyn, Mathematics Department, Brooklyn, New-York.
[8] A. J. Baker, An Introduction to p-Adic Numbers and p-Adic Analysis Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland. · Zbl 1203.68206
[9] Grande-De Kimpe, N.; Khrennikov, A. Yu., Non-Arcimedian Laplace transform, Bull. BelgianMath. Soc., 3, 225-237, (1996) · Zbl 0845.46047
[10] Fagin, R.; Halpern, J.; Megiddo, N., A logic for reasoning about probabilities, Inform. Comp., 87, 78-128, (1990) · Zbl 0811.03014
[11] F. Q. Gouvea, p-Adic Numbers: An Introduction, 2nd ed. (Springer, 2000). · Zbl 0786.11001
[12] Ikodinović, N.; Ognjanović, Z., A logic with coherent conditional probabilities, in Symbolic and Quantitative Approaches to Reasoningwith Uncertainty, Lect.Notes Comp. Sci., 3571, 726-736, (2005) · Zbl 1122.03015
[13] Ikodinović, N.; Rašković, M.; Marković, Z.; Ognjanović, Z., Measure logic, Lect. Notes Comp. Sci. (LNCS/LNAI), 4724, 128-138, (2007) · Zbl 1148.68485
[14] Ikodinović, N.; Rašković, M.; Marković, Z.; Ognjanović, Z., Logics with generalized measure operators, J. Multiple-Valued Logic Soft Comp., 20, 527-555, (2013) · Zbl 1240.03003
[15] Ilić Stepić, A.; Ognjanović, Z.; Ikodinović, N.; Perović, A., A p-adic probability logic, Math. Logic Quar., 58, 263-280, (2012) · Zbl 1251.03027
[16] Ilić Stepić, A.; Ognjanović, Z.; Ikodinović, N., Conditional p-adic probability logic, Int. J. Approx. Reas., 55, 1843-1865, (2014) · Zbl 1433.03062
[17] Ilić Stepić, A.; Ognjanović, Z., Logics for reasoning about processes of thinking with information coded by p-adic numbers, Studia Log., 103, 145-174, (2015) · Zbl 1382.03045
[18] Ilić Stepić, A., A logic for reasoning about qualitative probability, Publ. L’Inst. Math. N. S., 87, 97-108, (2010) · Zbl 1289.03006
[19] J. M. Keynes, Treatise on Probability (MacMillan and Co., London, 1921). · JFM 48.0615.08
[20] Khrennikov, A., Toward theory of p-adic valued probabilities, Stud. Logic Gram. Rhet., 14, 137-154, (2008)
[21] Khrennikov, A., Human subconscious as a p-adic dynamical system, J. Theor. Biol., 193, 179-196, (1998)
[22] Khrennikov, A. Yu., P-adic discrete dynamical systems and collective behaviour of information states in cognitive models, Disc. Dyn. Nat. Soc., 5, 59-69, (2000) · Zbl 1229.37128
[23] A. Yu. Khrennikov, p-Adic Valued Distibutions inMathematical Physics (Kluwer Acad. Publ., Dordrecht, 1994).
[24] A. Yu. Khrennikov, Interpretations of Probability (Walter de Gruyter, Berlin, 2009). · Zbl 1369.81014
[25] Khrennikov, A. Yu., Mathematical methods of the non-Arcimedean physics, Uspekhi Mat. Nauk, 45, 79-110, (1990)
[26] A. Yu. Khrennikov, Non-Arcimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997). · Zbl 0920.11087
[27] Khrennikov, A. Yu., P-adic quantum mehanics with p-adic valued functions, J. Math. Phys., 32, 932-937, (1991) · Zbl 0746.46067
[28] Khrennikov, A., Toward theory of p-adic valued probabilities, Stud. Logic Gram. Rhet., 14, 137-154, (2008)
[29] Khrennikov, A. Yu., P-adic probability interpretation of bell’s inequality, Phys. Lett. A, 200, 219-223, (1995) · Zbl 1020.81534
[30] N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Functions (Springer-Verlag, New-York, Berlin, Heidelberg, Tokyo, 1984). · Zbl 0364.12015
[31] Marković, Z.; Ognjanović, Z.; Rašković, M., A probabilistic extension of intuitionistic logic, Math. Log. Quar., 49, 415-424, (2003) · Zbl 1022.03011
[32] Milošević, M.; Ognjanović, Z., A first-order conditional probability logic, Logic J. IGPL, 20, 235-253, (2012) · Zbl 1251.03030
[33] Milošević, M.; Ognjanović, Z., A first-order conditional probability logic with iterations, Publ. L’Inst. Math. N. S., 93, 19-27, (2013) · Zbl 1313.03008
[34] Nilsson, N., Probabilistic logic, Art. Intel., 28, 71-87, (1986) · Zbl 0589.03007
[35] Ognjanović, Z.; Perović, A.; Rašković, M., Logic with the qualitative probability operator, Logic J. IGPL, 16, 105-120, (2008) · Zbl 1138.03024
[36] Ognjanović, Z.; Rašković, M.; Marković, Z., Probability logics, Zbornik Radova, Subseries Logic Comp. Sci., 12, 35-111, (2009) · Zbl 1224.03005
[37] Ognjanović, Z.; Rašković, M., Some probability logic with new types of probability operators, J. Log. Comp., 9, 181-195, (1999) · Zbl 0941.03022
[38] Ognjanović, Z.; Ikodinović, N., A logic with higher order conditional probabilities, Publ. L’Inst. Math. N. S., 82, 141-154, (2007) · Zbl 1203.68206
[39] Ognjanović, Z.; Rašković, M., Some first-order probability logics, Theor. Comp. Sci., 247, 191-212, (2000) · Zbl 0954.03024
[40] Rašković, M.; Marković, Z.; Ognjanović, Z., A logic with approximate conditional probabilities that can model default reasoning, Int. J. Appr. Reas., 49, 52-66, (2008) · Zbl 1184.68520
[41] Ognjanović, Z.; Marković, Z.; Rašsković, M., Completeness theorem for a logic with imprecise and conditional probabilities, Publ. L’Inst. Math. N. S., 78, 35-49, (2005) · Zbl 1144.03019
[42] Rašković, M., Classical logic with some probability operators, Publ. L’Inst. Math. N. S., 53, 1-3, (1993) · Zbl 0799.03018
[43] Ognjanović, Z.; Rašković, M.; Marković, Z., Probability logics, Zbornik Radova, Subseries Logic Comp. Sci., 12, 35-111, (2009) · Zbl 1224.03005
[44] Djordjervić, R.; Rašković, M.; Ognjanović, Z., Completeness theorem for propositional probabilistic models whose measures have only finite ranges, Arch.Math. Log., 43, 557-563, (2004) · Zbl 1057.03028
[45] Milošević, M.; Ognjanović, Z., A first-order conditional probability logic, Logic J. IGPL, 20, 235-253, (2012) · Zbl 1251.03030
[46] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., The spectral theory in the p-adic quantum mehanics, Izv. Akad. Nauk. SSSR, Ser.Mat., 54, 275-302, (1990) · Zbl 0709.22010
[47] Khrennikov, A.; Kozyrev, A., 2-adic clustering of the pammatrix, J. Theor. Biol., 261, 396-406, (2009) · Zbl 1403.92071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.