×

zbMATH — the first resource for mathematics

A finiteness property for preperiodic points of Chebyshev polynomials. (English) Zbl 1258.37077

MSC:
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
11G50 Heights
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
37P15 Dynamical systems over global ground fields
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1017/CBO9780511565977
[2] Baker M., J. Reine Angew. Math. 585 pp 61–
[3] DOI: 10.5802/aif.2196 · Zbl 1234.11082
[4] DOI: 10.2140/ant.2008.2.217 · Zbl 1182.11030
[5] DOI: 10.1215/S0012-7094-97-08921-3 · Zbl 0918.11035
[6] DOI: 10.1006/jnth.1997.2099 · Zbl 0895.14006
[7] Chambert-Loir A., J. Reine Angew. Math. 595 pp 215–
[8] DOI: 10.1007/s00208-006-0751-x · Zbl 1175.11029
[9] Hardy G. H., An Introduction to the Theory of Numbers (1979) · Zbl 0423.10001
[10] Lyubich M., Ergodic Theory Dynam. Systems 3 pp 351–
[11] Milnor J., Introductory lectures, in: Dynamics in One Complex Variable (1999) · Zbl 0946.30013
[12] DOI: 10.1112/blms/bdn053 · Zbl 1243.11073
[13] DOI: 10.1007/0-8176-4417-2_10
[14] DOI: 10.1007/978-0-387-69904-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.