zbMATH — the first resource for mathematics

Integral division points on curves. (English) Zbl 1292.11072
Let \(k\) be a number field and \(S\) a set of primes containing all the infinite ones. Let \(A/k\) be a semi-abelian variety, \(\Gamma_0\) a finitely generated subgroup of \(A(\overline k)\) and \(\Gamma \subseteq A(\overline k)\) be the division group attached to \(\Gamma_0\), i.e the set of points \(P\in A(\overline k)\) such that there exists a integer \(n\) such that \(nP\in \Gamma_0\).
If \(X/k\) is any variety and \(\overline X\) its completion, define \(\partial X:=\overline X - X\). Let \(T\) be any subset of \(\overline X\), and let \(\overline T\) be its Zariski closure in \(\overline X\). Any \(P\in X(\overline k)\) is said to be \(S\)-integral relative to \(T\) if it is \((\overline T \cup \partial X, S)\)-integral on \(\overline X\).
The authors pose the following conjecture:
Conjecture Let \(k\) and \(S\) be as above and let \(A/k\) be a semi-abelian variety and \(\Gamma\) a division group in \(A(\overline k)\). Suppose that \(D\) is a non-zero effective divisor on \(A\) which is not the translate of any torsion divisor by any point of \(\Gamma\). Then the set \[ \{P\in \Gamma: P \text{ is \(S\)-integral relative to }D\} \] is not Zariski dense in \(A\).
The authors then prove the conjecture for \(1\)-dimensional semi-abelian varieties, i.e. for elliptic curves and \(1\)-dimensional tori.

11G35 Varieties over global fields
11G05 Elliptic curves over global fields
11G50 Heights
14G05 Rational points
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
37P35 Arithmetic properties of periodic points
PDF BibTeX Cite
Full Text: DOI
[1] doi:10.1007/978-1-4612-0851-8
[2] doi:10.1007/978-0-387-69904-2
[3] doi:10.1016/0022-314X(88)90019-4 · Zbl 0654.10019
[4] doi:10.1007/BF01405086 · Zbl 0235.14012
[6] doi:10.1090/S0002-9947-2011-05350-X · Zbl 1300.37052
[7] doi:10.1016/j.jnt.2010.10.003 · Zbl 1214.11070
[8] doi:10.1112/blms/bdn053 · Zbl 1243.11073
[9] doi:10.1007/978-1-4612-1210-2
[11] doi:10.1007/BF01394276 · Zbl 0638.14026
[12] doi:10.1007/978-1-4612-5485-0
[14] doi:10.1007/978-3-662-07010-9
[15] doi:10.1112/plms/pdm022 · Zbl 1130.11035
[16] doi:10.2307/2944319 · Zbl 0734.14007
[17] doi:10.1142/S1793042110003356 · Zbl 1258.37077
[18] doi:10.2307/3062133 · Zbl 1026.11038
[19] doi:10.1112/jlms/jdq097 · Zbl 1244.37052
[20] doi:10.1007/BF01393743 · Zbl 0662.10012
[22] doi:10.2140/ant.2008.2.217 · Zbl 1182.11030
[23] doi:10.1353/ajm.1999.0014 · Zbl 1018.11027
[25] doi:10.2140/ant.2008.2.183 · Zbl 1158.14029
[26] doi:10.1016/j.jnt.2011.01.005 · Zbl 1246.37102
[27] doi:10.1215/S0012-7094-93-07129-3 · Zbl 0811.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.