×

Computing capture tubes. (English) Zbl 1354.70024

Nehmeier, Marco (ed.) et al., Scientific computing, computer arithmetic, and validated numerics. 16th international symposium, SCAN 2014, Würzburg, Germany, September 21–26, 2014. Revised selected papers. Cham: Springer (ISBN 978-3-319-31768-7/pbk; 978-3-319-31769-4/ebook). Lecture Notes in Computer Science 9553, 209-224 (2016).
Summary: Many mobile robots such as wheeled robots, boats, or plane are described by nonholonomic differential equations. As a consequence, they have to satisfy some differential constraints such as having a radius of curvature for their trajectory lower than a known value. For this type of robots, it is difficult to prove some properties such as the avoidance of collisions with some moving obstacles. This is even more difficult when the initial condition is not known exactly or when some uncertainties occur. This paper proposes a method to compute an enclosure (a tube) for the trajectory of the robot in situations where a guaranteed interval integration cannot provide any acceptable enclosures. All properties that are satisfied by the tube (such as the non-collision) will also be satisfied by the actual trajectory of the robot.
For the entire collection see [Zbl 1334.65002].

MSC:

70E60 Robot dynamics and control of rigid bodies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin, JP; Frankowska, H., Set-Valued Analysis (1990), Boston: Birkhäuser, Boston · Zbl 0713.49021
[2] Le Bars, F.; Sliwka, J.; Reynet, O.; Jaulin, L., State estimation with fleeting data, Automatica, 48, 2, 381-387 (2012) · Zbl 1260.93153 · doi:10.1016/j.automatica.2011.11.004
[3] Berz, M.; Makino, K., Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliable Comput., 4, 3, 361-369 (1998) · Zbl 0976.65061 · doi:10.1023/A:1024467732637
[4] Bethencourt, A.; Jaulin, L., Solving non-linear constraint satisfaction problems involving time-dependant functions, Math. Comput. Sci., 8, 3, 503-523 (2014) · Zbl 1302.65122 · doi:10.1007/s11786-014-0209-6
[5] Blanchini, F.; Miani, S., Set Theoretic Methods in Control (2008), Boston: Birkhauser, Boston · Zbl 1140.93001 · doi:10.1007/978-0-8176-4606-6
[6] Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of parametric barrier functions for dynamical systems using interval analysis. In: IEEE CDC, Los Angeles, United States (2014) · Zbl 1357.93046
[7] Chabert, G.; Jaulin, L., Contractor programming, Artif. Intell., 173, 1079-1100 (2009) · Zbl 1191.68628 · doi:10.1016/j.artint.2009.03.002
[8] Chapoutot, A., Alexandre dit Sandretto, J., Mullier, O.: Dynibex. ENSTA (2015). http://perso.ensta-paristech.fr/ chapoutot/dynibex/
[9] Fernandes, ML; Zanolin, F., Remarks on strongly flow-invariant sets, J. Math. Anal. Appl., 128, 176-188 (1987) · Zbl 0657.34045 · doi:10.1016/0022-247X(87)90223-X
[10] Jaulin, L.; Le Bars, F., An interval approach for stability analysis: application to sailboat robotics, IEEE Trans. Robot., 27, 5, 282-287 (2012)
[11] Kapela, T.; Zgliczynski, P., A lohner-type algorithm for control systems and ordinary differential inclusions, Discrete Continuous Dyn. Syst., 11, 2, 365-385 (2009) · Zbl 1185.65079 · doi:10.3934/dcdsb.2009.11.365
[12] Langson, W.; Chryssochoos, I.; Rakovic, SV; Mayne, DQ, Robust model predictive control using tubes, Automatica, 40, 1, 125-133 (2004) · Zbl 1036.93019 · doi:10.1016/j.automatica.2003.08.009
[13] Lhommeau, M.; Jaulin, L.; Hardouin, L., Capture basin approximation using interval analysis, Int. J. Adap. Control Sig. Process., 25, 3, 264-272 (2011) · Zbl 1225.93057 · doi:10.1002/acs.1195
[14] Lohner, R.; Kaucher, E.; Kulisch, U.; Ullrich, CH, Enclosing the solutions of ordinary initial and boundary value problems, Computer Arithmetic: Scientific Computation and Programming Languages, 255-286 (1987), Stuttgart: BG Teubner, Stuttgart · Zbl 0614.65001
[15] Le Menec, S.; Breton, M.; Szajowski, K., Linear differential game with two pursuers and one evader, Advances in Dynamic Games, 209-226 (2011), Boston: Birkhauser, Boston · Zbl 1218.91026 · doi:10.1007/978-0-8176-8089-3_11
[16] Moore, RE, Interval Analysis (1966), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0176.13301
[17] Nedialkov, NS; Jackson, KR; Corliss, GF, Validated solutions of initial value problems for ordinary differential equations, Appl. Math. Comput., 105, 1, 21-68 (1999) · Zbl 0934.65073
[18] Raissi, T.; Ramdani, N.; Candau, Y., Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica, 40, 1771-1777 (2004) · Zbl 1067.93019 · doi:10.1016/j.automatica.2004.05.006
[19] Ratschan, S.; She, Z., Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48, 7, 4377-4394 (2010) · Zbl 1215.65188 · doi:10.1137/090749955
[20] Revol, N.; Makino, K.; Berz, M., Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, J. Logic Algebraic Program., 64, 135-154 (2005) · Zbl 1080.68519 · doi:10.1016/j.jlap.2004.07.008
[21] Stancu, A., Jaulin, L., Bethencourt, A.: Stability analysis for time-dependent nonlinear systems: an interval approach. Internal report, University of Manchester (2015)
[22] Wilczak, D.; Zgliczynski, P., Cr-Lohner algorithm, Schedae Informaticae, 20, 9-46 (2011)
[23] Yorke, JA, Invariance for ordinary differential equations, Math. Syst. Theor., 1, 4, 353-372 (1967) · Zbl 0155.14201 · doi:10.1007/BF01695169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.