×

Experimental exploration of fluid-driven cracks in brittle hydrogels. (English) Zbl 1461.76005

Summary: Hydraulic fracturing is a procedure by which a fracture is initiated and propagates due to pressure (hydraulic loading) applied by a fluid introduced inside the fracture. In this study, we focus on a crack driven by an incompressible Newtonian fluid, injected at a constant rate into an elastic matrix. The injected fluid creates a radial fracture that propagates along a plane. We investigate this type of fracture both theoretically and experimentally. Our experimental apparatus uses a brittle and transparent polyacrylamide hydrogel matrix. Using this medium, we examine the rate of radial crack growth, fracture aperture, shape of the crack tip and internal fluid flow field. Our range of experimental parameters allows us to exhibit two distinct fracturing regimes, and the transition between these, in which the rate of radial crack propagation is dominated by either viscous flow within the fracture or the material toughness. Measurements of the profiles near the crack tip provide additional evidence of the viscosity-dominated and toughness-dominated regimes, and allow us to observe the transition from the viscous to the toughness regime as the crack propagates. Particle image velocimetry measurements show that the flow in the crack is radial, as expected in the viscous regime and in the early stages of the toughness regime. However, at later times in the toughness regime, circulation cells are observed in the flow within the crack that destroy the radial symmetry of the flow field.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76D99 Incompressible viscous fluids
74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alpern, J. S., Marone, C. J., Elsworth, D., Belmonte, A. & Connelly, P.2012Exploring the physicochemical processes that govern hydraulic fracture through laboratory experiments. In 46th US Rock Mechanics/Geomechanics Symposium, ARMA.
[2] Batchelor, G. K., An Introduction to Fluid Dynamics, (1967), Cambridge University Press · Zbl 0152.44402
[3] Bunger, A. P., A photometry method for measuring the opening of fluid-filled fractures, Meas. Sci. Technol., 17, 12, 3237-3244, (2006) · doi:10.1088/0957-0233/17/12/006
[4] Bunger, A. P.; Detournay, E., Early-time solution for a radial hydraulic fracture, ASCE J. Engng Mech., 133, 5, 534-540, (2007) · doi:10.1061/(ASCE)0733-9399(2007)133:5(534)
[5] Bunger, A. P.; Detournay, E., Experimental validation of the tip asymptotics for a fluid-driven crack, J. Mech. Phys. Solids, 56, 11, 3101-3115, (2008) · doi:10.1016/j.jmps.2008.08.006
[6] Dalziel, S. B.2006 Digiflow user guide. DL Research Partners, version 1.
[7] Detournay, E.; Garagash, D. I., The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid, J. Fluid Mech., 494, 1-32, (2003) · Zbl 1063.74098 · doi:10.1017/S0022112003005275
[8] Economides, M. J. & Nolte, K. G.2000Reservoir Stimulation, vol. 18. Wiley.
[9] Fairhurst, C., Measurement of in-situ rock stresses. With particular reference to hydraulic fracturing, Rock Mechanics (United States), 2, (1964)
[10] Garagash, D.; Detournay, E.; Adachi, J., Multiscale tip asymptotics in hydraulic fracture, J. Fluid Mech., 669, 260-297, (2011) · Zbl 1225.76270 · doi:10.1017/S002211201000501X
[11] Garagash, D. I.; Detournay, E., The tip region of a fluid-driven fracture in an elastic medium, Trans. ASME J. Appl. Mech., 67, 1, 183-192, (2000) · Zbl 1110.74448 · doi:10.1115/1.321162
[12] Garagash, D. I.; Detournay, E., Plane-strain propagation of a fluid-driven fracture: small toughness solution, Trans. ASME J. Appl. Mech., 72, 6, 916-928, (2005) · Zbl 1111.74411 · doi:10.1115/1.2047596
[13] Hubbert, M. K.; Willis, D. G., Mechanics of hydraulic fracturing, J. Petrol. Tech., 9, 6, 153-166, (1957)
[14] Huppert, H. E.; Neufeld, J. A., The fluid mechanics of carbon dioxide sequestration, Annu. Rev. Fluid Mech., 46, 255-272, (2014) · Zbl 1297.76184 · doi:10.1146/annurev-fluid-011212-140627
[15] Kanninen, M. F.; Popelar, C. L., Advanced Fracture Mechanics, (1985), Oxford University Press · Zbl 0587.73140
[16] Lai, C. Y.; Zheng, Z.; Dressaire, E.; Stone, H. A., Fluid-driven cracks in an elastic matrix in the toughness-dominated limit, Phil. Trans. R. Soc. Lond. A, 374, 2078, (2016) · Zbl 1353.74028
[17] Lai, C. Y.; Zheng, Z.; Dressaire, E.; Wexler, J. S.; Stone, H. A., Experimental study on penny-shaped fluid-driven cracks in an elastic matrix, Proc. R. Soc. Lond. A, 471, 2182, (2015)
[18] Lister, J. R.; Kerr, R. C., Fluid-mechanical models of crack propagation and their application to magma transport in dykes, J. Geophys. Res., 96, B6, 10049-10077, (1991) · doi:10.1029/91JB00600
[19] Livne, A.; Cohen, G.; Fineberg, J., Universality and hysteretic dynamics in rapid fracture, Phys. Rev. Lett., 94, 22, (2005) · doi:10.1103/PhysRevLett.94.224301
[20] Mair, R.; Hight, D., Compensation grouting, World Tunnelling and Subsurface Excavation, 7, 8, 361-367, (1994)
[21] Murphy, H. D.; Tester, J. W.; Grigsby, C. O.; Potter, R. M., Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res., 86, B8, 7145-7158, (1981) · doi:10.1029/JB086iB08p07145
[22] O’Keeffe, N. J.; Linden, P. F., Hydrogel as a medium for fluid-driven fracture study, Exp. Mech., 57, 9, 1483-1493, (2017) · doi:10.1007/s11340-017-0314-y
[23] Rice, J. R.1968Mathematical analysis in the mechanics of fracture. Fracture: an Advanced Treatise. vol. 2, pp. 191-311. Academic Press. · Zbl 0214.51802
[24] Rudnicki, J. W., Geomechanics, Intl J. Solids Struct., 37, 1, 349-358, (2000) · Zbl 1075.74056 · doi:10.1016/S0020-7683(99)00098-0
[25] Savitski, A. A.; Detournay, E., Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions, Intl J. Solids Struct., 39, 26, 6311-6337, (2002) · Zbl 1032.74640 · doi:10.1016/S0020-7683(02)00492-4
[26] Sneddon, I. N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. Lond. A, 187, 229-260, (1946) · doi:10.1098/rspa.1946.0077
[27] Sneddon, I. N., Fourier Transforms, (1951), McGraw-Hill
[28] Sneddon, I. N.; Lowengrub, M., Crack Problems in the Classical Theory of Elasticity, (1969), Wiley · Zbl 0201.26702
[29] Spence, D. A.; Sharp, P., Self-similar solutions for elastohydrodynamic cavity flow, Proc. R. Soc. Lond. A, 400, 1819, 289-313, (1985) · Zbl 0581.76007 · doi:10.1098/rspa.1985.0081
[30] Takada, A., Experimental study on propagation of liquid-filled crack in gelatin: shape and velocity in hydrostatic stress condition, J. Geophys. Res., 95, B6, 8471-8481, (1990) · doi:10.1029/JB095iB06p08471
[31] Tanaka, Y.; Fukao, K.; Miyamoto, Y., Fracture energy of gels, Eur. Phys. J. E, 3, 4, 395-401, (2000)
[32] Tanaka, Y.; Fukao, K.; Miyamoto, Y.; Nakazawa, H.; Sekimoto, K., Regular patterns on fracture surfaces of polymer gels, J. Phys. Soc. Japan, 65, 8, 2349-2352, (1996) · doi:10.1143/JPSJ.65.2349
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.