×

Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. (English) Zbl 1364.93546

Summary: In this paper, we formulate an alcohol quitting model in which we consider the impact of distributed time delay between contact and infection process by characterizing dynamic nature of alcoholism behaviours, and we generalize the infection rate to the general case, simultaneously, we consider two different control strategies. Next, we discuss the qualities on the model, the existence and boundedness as well as positivity of the equilibrium are involved. Then, under certain proper conditions, we construct appropriate Lyapunov functionals to prove the global stability of alcohol free equilibrium point \(E_{0}\) and alcoholism equilibrium \(E^{*}\) respectively. Furthermore, the optimal control strategies are derived by proposing an objective functional and using classic Pontryagin’s Maximum Principle. Numerical simulations are conducted to support our theoretical results derived in optimal control.

MSC:

93C95 Application models in control theory
93D15 Stabilization of systems by feedback
91D30 Social networks; opinion dynamics
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Adnani, Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate,, International Journal of Stochastic Analysis (2013) · Zbl 1314.92153
[2] E. Beretta, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Anal., 47, 4107 (2001) · Zbl 1042.34585 · doi:10.1016/S0362-546X(01)00528-4
[3] Centers for Disease Control, <em>Alcohol-related disease impact (ARDI) software</em>,, Atlanta (2004)
[4] Centers for Disease Control, <em>Binge Drinking</em>,, <a href=
[5] C. M. Chen, <em>Trends in Alcohol-related Morbidity Among Short-stay Community Hospital Discharges United States, 1979-2007</em>,, US Department of Health and Human Services (2010)
[6] C. Chen, Early-onset drug use and risk for drug dependence problems,, Addictive Behaviors, 34, 319 (2009) · doi:10.1016/j.addbeh.2008.10.021
[7] P. van den Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci, 180, 29 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[8] K. R. Fister, Optimizing chemotherapy in an HIV model,, Electronic Journal of Differential Equations, 32, 1 (1998) · Zbl 1068.92503
[9] W. H. Fleming, <em>Deterministic and Stochastic Optimal Control</em>,, No. 1 (1975) · Zbl 0323.49001
[10] M. Glavas, Stress, alcohol consumption and the hypothalamic-pituitary-adrenal axis,, in Nutrients, 165 (2005) · doi:10.1385/1-59259-952-4:165
[11] L. Göllmann, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and management Optimization, 10, 413 (2014) · Zbl 1276.49011
[12] L. Göllmann, Optimal control problems with delays in state and control variables subject to mixed control-state constraints,, Optim. Control Appl. Meth., 32, 1 (2008)
[13] A. Halanay, Some new results and problems in the theory of differential-delay equations,, SIAM Rev, 13, 55 (1971) · Zbl 0216.11902 · doi:10.1137/1013004
[14] J. Hale, <em>Introduction to Functional Differential Equations</em>,, Springer-Verlag (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[15] K. Hattaf, A delayed SIR epidemic model with general incidence rate,, Electronic Journal of Qualitative Theory of Differential Equations, 3, 1 (2013) · Zbl 1340.34315
[16] K. Hattaf, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method,, ISRN Biomathematics, 2012 (2012) · Zbl 1268.92089 · doi:10.5402/2012/215124
[17] K. Hattaf, A Delay virus dynamics model with general incidence rate,, Differ. Equ. Dyn. Syst., 22, 181 (2014) · Zbl 1325.92079 · doi:10.1007/s12591-013-0167-5
[18] K. Hattaf, Stability analysis of a virus dynamics model with general incidence rate and two delays,, Appl. Math. Comput., 221, 514 (2013) · Zbl 1329.92129 · doi:10.1016/j.amc.2013.07.005
[19] K. Hattaf, Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response,, Comp. Appl. Math., 34, 807 (2015) · Zbl 1327.35179 · doi:10.1007/s40314-014-0143-x
[20] F. Herbert, <em>Heavy Drinking: The Myth of Alcoholism as a Disease,</em>, University of California Press (1988)
[21] H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci., 28, 335 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[22] G. Huang, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Applied Mathematics Letters, 24, 1199 (2011) · Zbl 1217.34128 · doi:10.1016/j.aml.2011.02.007
[23] H. F. Huo, Global stability for a binge drinking model with two stages,, Discrete Dynamics in Nature and Society (2012) · Zbl 1253.91157
[24] Y. Kuang, <em>Delay Differential Equations with Application in Population Dynamics</em>,, Academic Press (1993) · Zbl 0777.34002
[25] E. Kuntsche, Why do young people drink? A review of drinking motives,, Clinical Psychology Review, 25, 841 (2005) · doi:10.1016/j.cpr.2005.06.002
[26] H. Laarabi, Optimal control of a delayed sirs epidemic model with vaccination and treatment,, Acta Biotheor., 63, 87 (2015) · doi:10.1007/s10441-015-9244-1
[27] J. P. LaSalle, <em>The Stability of Dynamical Systems</em>,, Regional Conference Series in Applied Mathematics (1976) · Zbl 0364.93002
[28] S. Lenhart, <em>Optimal Control Applied to Biological Models,</em>, Chapman & Hall/CRC Mathematical and Computational Biology Series (2007) · Zbl 1291.92010
[29] E. M. Lotfi, Partial differential equations of an epidemic model with spatial diffusion,, International Journal of Partial Differential Equations, 2014 (2014) · Zbl 1300.92103 · doi:10.1155/2014/186437
[30] D. L. Lukes, <em>Differential Equations: Classical to Controlled, Mathematics in Science and Engineering</em>,, Academic Press (1982) · Zbl 0509.34003
[31] W. Ma, Permanence of an SIR epidemic model with distributed time delays,, Tohoku Math. J., 54, 581 (2002) · Zbl 1014.92033 · doi:10.2748/tmj/1113247650
[32] C. Connell McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete,, Nonlinear Analysis: Real World Applications, 11, 55 (2010) · Zbl 1185.37209 · doi:10.1016/j.nonrwa.2008.10.014
[33] C. Connell McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence,, Mathematical Biosciences and Engineering, 7, 837 (2010) · Zbl 1259.34067 · doi:10.3934/mbe.2010.7.837
[34] A. K. Misra, Effect of awareness programs in controlling the prevelence of an epidemic with time delay,, Journal of Biological Systems, 19, 389 (2011) · Zbl 1228.92067 · doi:10.1142/S0218339011004020
[35] A. Mubayi, The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments,, Socio-Economic Planning Sciences, 44, 45 (2010) · doi:10.1016/j.seps.2009.02.002
[36] D. Muller, Neurophisiologic findings in chronic alcohol abuse,, Pyschiatr. Neurol. Med. Pyschol., 37, 129 (1985)
[37] G. Mulone, Modeling binge drinking,, International Journal of Biomathematics, 5 (2012) · Zbl 1297.92079 · doi:10.1142/S1793524511001453
[38] S. S. Mushayabasa, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea,, Nonlinear Dynamics, 66, 695 (2011) · Zbl 1242.92041 · doi:10.1007/s11071-011-9942-4
[39] L. S. Pontryagin, <em>The Mathematical Theory of Optimal Processes</em>,, Wiley (1962) · Zbl 0112.05502
[40] R. Room, Alcohol and public health,, The Lancet, 365, 519 (2005) · doi:10.1016/S0140-6736(05)70276-2
[41] F. Sanchez, <em>Drinking as an Epidemica Simple Mathematical Model with Recovery and Relapse</em>,, Guide to Evidence-Based Relapse Prevention (2007)
[42] Y. Takeuchi, Global asymptotic properties of a delay SIR epidemic model with finite incubation times,, Nonlinear Anal., 42, 931 (2000) · Zbl 0967.34070 · doi:10.1016/S0362-546X(99)00138-8
[43] G. Testino, Alcoholic diseases in hepato-gastroenterology: A point of view,, Hepato-Gastroenterology, 55, 371 (2008)
[44] H. Walter, Gender specific differences in alcoholism: Implications for treatment,, Arch. Womens Ment. Health, 6, 253 (2003) · doi:10.1007/s00737-003-0014-8
[45] X.-Y. Wang, Optimal control strategies in an alcoholism model,, Abstract and Applied Analysis (2014) · Zbl 1474.34420 · doi:10.1155/2014/954069
[46] R. Xu, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,, Nonlinear Anal. RWA, 10, 3175 (2009) · Zbl 1183.34131 · doi:10.1016/j.nonrwa.2008.10.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.