×

zbMATH — the first resource for mathematics

A projective Dirac operator on \(\mathbb{CP}^2\) within fuzzy geometry. (English) Zbl 1294.81065
Summary: We propose an ansatz for the commutative canonical spin\({}_{c}\) Dirac operator on \(\mathbb{CP}^2\) in a global geometric approach using the right invariant (left action-) induced vector fields from SU(3). This ansatz is suitable for noncommutative generalisation within the framework of fuzzy geometry. Along the way we identify the physical spinors and construct the canonical spin\({}_{c}\) bundle in this formulation. The chirality operator is also given in two equivalent forms. Finally, using representation theory we obtain the eigenspinors and calculate the full spectrum. We use an argument from the fuzzy complex projective space \(\mathbb{CP}_F^2\) based on the fuzzy analogue of the unprojected spin\({}_{c}\) bundle to show that our commutative projected spin\({}_{c}\) bundle has the correct SU(3)-representation content.

MSC:
81R60 Noncommutative geometry in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
14N05 Projective techniques in algebraic geometry
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
20C35 Applications of group representations to physics and other areas of science
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Panero, M., Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere, JHEP, 05, 082, (2007)
[2] Panero, M., Quantum field theory in a non-commutative space: theoretical predictions and numerical results on the fuzzy sphere, SIGMA, 2, 081, (2006)
[3] Delgadillo-Blando, R.; Ydri, B., Towards noncommutative fuzzy QED, JHEP, 03, 056, (2007)
[4] Behr, W.; Meyer, F.; Steinacker, H., Gauge theory on fuzzy \(S\)\^{2} × \(S\)\^{2} and regularization on noncommutative \(R\)\^{4}, JHEP, 07, 040, (2005)
[5] Grosse, H.; Klimčík, C.; Prešnajder, P., Topologically nontrivial field configurations in noncommutative geometry, Commun. Math. Phys., 178, 507, (1996)
[6] Grosse, H.; Madore, J.; Steinacker, H., Field theory on the q-deformed fuzzy sphere. I, J. Geom. Phys., 38, 308, (2001)
[7] Harikumar, E.; Queiroz, AR; Teotonio-Sobrinho, P., Dirac operator on the q-deformed fuzzy sphere and its spectrum, JHEP, 09, 037, (2006)
[8] Harikumar, E.; Queiroz, AR; Teotonio-Sobrinho, P., Index theorem for the q-deformed fuzzy sphere, J. Phys., A 40, 3671, (2007)
[9] Harikumar, E., ‘schwinger model’ on the fuzzy sphere, Mod. Phys. Lett., A 25, 3151, (2010)
[10] Medina, J.; O’Connor, D., Scalar field theory on fuzzy \(S\)\^{4}, JHEP, 11, 051, (2003)
[11] Ammann, B.; Bär, C., The Dirac operator in nilmanifolds and collapsing circle bundles, Ann. Global Anal. Geom., 16, 221, (1998)
[12] Grosse, H.; Strohmaier, A., Noncommutative geometry and the regularization problem of 4D quantum field theory, Lett. Math. Phys., 48, 163, (1999)
[13] Grosse, H.; Steinacker, H., Finite gauge theory on fuzzy CP\^{2}, Nucl. Phys., B 707, 145, (2005)
[14] Karabali, D.; Nair, VP, Quantum Hall effect in higher dimensions, Nucl. Phys., B 641, 533, (2002)
[15] Dolan, BP; Nash, C., The standard model fermion spectrum from complex projective spaces, JHEP, 10, 041, (2002)
[16] Balachandran, AP; Dolan, BP; Lee, J-H; Martin, X.; O’Connor, D., Fuzzy complex projective spaces and their star-products, J. Geom. Phys., 43, 184, (2002)
[17] Sämann, C., Fuzzy toric geometries, JHEP, 02, 111, (2008)
[18] Murray, S.; Sämann, C., Quantization of flag manifolds and their supersymmetric extensions, Adv. Theor. Math. Phys., 12, 641, (2008)
[19] Dolan, BP; O’Connor, D.; Presnajder, P., Fuzzy complex quadrics and spheres, JHEP, 02, 055, (2004)
[20] Dolan, BP; O’Connor, D., A fuzzy three sphere and fuzzy tori, JHEP, 10, 060, (2003)
[21] Madore, J., The fuzzy sphere, Class. Quant. Grav., 9, 69, (1992)
[22] A. Connes, Noncommutative geometry, Academic Press, London U.K. (1994).
[23] Balachandran, AP; Padmanabhan, P., Spin j Dirac operators on the fuzzy 2-sphere, JHEP, 09, 120, (2009)
[24] Cahen, M.; Franc, A.; Gutt, S., Spectrum of the Dirac operator on complex projective space \( {\mathbb{P}_{2q - 1}}\left( \mathbb{C} \right) \), Lett. Math. Phys., 18, 165, (1989)
[25] S. Seifarth and U. Semmelmann, The spectrum of the Dirac operator on complex projective spaces, SFB 288 preprint no. 85, Berlin Germany (1993).
[26] Balachandran, AP; Immirzi, G.; Lee, J.; Prešnajder, P., Dirac operators on coset spaces, J. Math. Phys., 44, 4713, (2003)
[27] Dolan, BP; Huet, I.; Murray, S.; O’Connor, D., Noncommutative vector bundles over fuzzy \( \mathbb{C}{\mathbb{P}^N} \) and their covariant derivatives, JHEP, 07, 007, (2007)
[28] Dolan, BP; Huet, I.; Murray, S.; O’Connor, D., A universal Dirac operator and noncommutative spin bundles over fuzzy complex projective spaces, JHEP, 03, 029, (2008)
[29] I. Huet, Laplacians and Dirac operator on\( \mathbb{C}P_F^N \), Ph.D. Thesis, CINVESTAV (2008).
[30] Hawking, SW; Pope, CN, Generalized spin structures in quantum gravity, Phys. Lett., B 73, 42, (1978)
[31] H.B. Lawson J r. and M.-L. Michelsohn, Spin geometry, Princeton mathematical series 38 (1989).
[32] C. Bär, Dependance on the spin structure of the Dirac spectrum, in Seminaires et Congres 4, Global Analysis and Harmonic Analysis, J.P. Bourguignon, T. Branson and O. Hijazi eds., (2000) pg. 17-33 [math/0007131].
[33] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume II, Cambridge University Press, (1999).
[34] Alexanian, G.; Balachandran, AP; Immirzi, G.; Ydri, B., Fuzzy \( \mathbb{C}{P^2} \), J. Geom. Phys., 42, 28, (2002)
[35] Dolan, BP, The spectrum of the Dirac operator on coset spaces with homogeneous gauge fields, JHEP, 05, 018, (2003)
[36] Dolan, BP; Nash, C., Chiral fermions and spin_{\(c\)} structures on matrix approximations to manifolds, JHEP, 07, 057, (2002)
[37] Swart, JJ, The octet model and its Clebsch-Gordan coefficients, Rev. Mod. Phys., 35, 916, (1963)
[38] C. Garcia-Recio and L.L. Salcedo, SU(6) ⊃ SU(3) × SU(2) and SU(8) ⊃ SU(4) × SU(2) Clebsch-Gordan coefficients, arXiv:1010.5667 [SPIRES].
[39] I. Huet, The square of the tangent bundle to S_{\(F\)}\^{2}and some physical applications, MSc. Thesis, CINVESTAV (2002).
[40] Salam, A.; Strathdee, JA, On Kaluza-Klein theory, Annals Phys., 141, 316, (1982)
[41] Perelomov, A.; Popov, V., Eigenvalues of Casimir operators, Sov. J. Nucl. Phys., 7, 290, (1968)
[42] Perelomov, A.; Popov, V., Casimir operators for U(\(N\)) and SU(\(N\)), Sov. J. Nucl. Phys., 3, 676, (1966)
[43] Perelomov, A.; Popov, V., Casimir operators for the orthogonal and symplectic groups, Sov. J. Nucl. Phys., 3, 819, (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.