zbMATH — the first resource for mathematics

Inverse spectral problem for the density of a vibrating elastic membrane. (English) Zbl 1443.74217
Summary: This paper is concerned with the recovery of an unknown symmetric density function in the weighted Helmholtz equation with Dirichlet boundary conditions from the lowest few eigenvalues. By using the piecewise constant function to approximate the density function and using the Rayleigh-Ritz approach to discretize the differential equation, the continuous inverse eigenvalue problem is converted to a related matrix inverse eigenvalue problem and then a least squares problem for the discrete model is formulated. The solution of the least squares problem via an iterative method is discussed and then an approximation to the unknown density is recovered. Numerical experiments are given to confirm its competitiveness.
74K15 Membranes
74G75 Inverse problems in equilibrium solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35R30 Inverse problems for PDEs
Full Text: DOI
[1] McCarthy, C. M., The inverse eigenvalue problem for a weighted Helmholtz equation, Appl. Anal., 77, 77-96 (2001) · Zbl 1068.65131
[2] Chen, C. M.; Huang, Y. Q., High Accuracy Theory of Finite Element Methods (1995), Hunan Science and Technology Press: Hunan Science and Technology Press Hunan, China, (in Chinese)
[3] Volkov, E. A., Differentiability properties of solutions of boundary value problem for the Laplace and Poisson equations on a rectangle, Proc. Steklov Inst. Math., 77, 89-112 (1965)
[4] Akulenko, L. D.; Nesterov, S. V., High-Precision Methods in Eigenvalue Problems and their Applications (2005), A CRC Press Company: A CRC Press Company Boca Raton, London, New York · Zbl 1086.34001
[5] Arridge, S. R., Optical tomography in medical imaging, Inverse Problems, 15, 41-93 (1999) · Zbl 0926.35155
[6] Bryan, K.; Leise, T., Impedance imaging, inverse problems, and Harry Potter’s cloak, SIAM Rev., 52, 359-377 (2010) · Zbl 1193.35248
[7] Gladwell, G. M.L.; Willms, N. B., On the mode shapes of the Helmholtz equation, J. Sound Vib., 188, 419-433 (1995) · Zbl 1232.74048
[8] McCarthy, C. M., Recovery of a density from the eigenvalues of a nonhomogeneous membrane, (Inverse Problems in Engineering: Theory and Practice (1999), ASME)
[9] Hochstadt, H., On the determination of the density of a vibrating string from spectral data, J. Math. Anal. Appl., 55, 673-685 (1976) · Zbl 0337.34023
[10] Shen, C. L., On some inverse spectral problems related to the Ambarzumyan problem and the dual string of the string equation, Inverse Problems, 23, 2417-2436 (2007) · Zbl 1131.34011
[11] Shen, C. L.; Tsai, T. M., On a uniform approximation of the density function of a string equation using eigenvalues and nodal points and some related inverse nodal problems, Inverse Problems, 11, 1113-1123 (1995) · Zbl 0837.34021
[12] Wei, G. S.; Xu, H. K., Inverse spectral problem for a string equation with partial information, Inverse Problems, 26, 115004 (2010) · Zbl 1219.34019
[13] Barcilon, V., A two-dimensional inverse eigenvalue problem, Inverse Problems, 6, 11-20 (1990) · Zbl 0712.35105
[14] El Badia, A., On the uniqueness of a bi-dimensional inverse spectral problem, C. R. Acad. Sci. Paris Sér. I Math., 308, 10, 273-276 (1989) · Zbl 0679.35083
[15] Knobel, R.; McLaughlin, J. R., A reconstruction method for a two-dimensional inverse eigenvalue problem, Z. Angew. Math. Phys., 45, 794-826 (1994) · Zbl 0828.35140
[16] Kurylev, Y. V., Multi-dimensional inverse boundary problems by BC-method: Groups of transformations and uniqueness results, Math. Comput. Modelling, 18, 33-45 (1993) · Zbl 0818.35138
[17] McCarthy, C. M., Reconstruction of an impedance in two-dimensions from spectral data, Appl. Anal., 81, 1161-1177 (2002) · Zbl 1081.35145
[18] Nachman, A.; Sylvester, J.; Uhlmann, G., An \(n\)-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115, 595-605 (1988) · Zbl 0644.35095
[19] Seidman, T. I., An inverse eigenvalue problem with rotational symmetry, Inverse Problems, 4, 1093-1115 (1988) · Zbl 0687.35108
[20] Hald, O. H., The inverse Sturm-Liouville problem and the Rayleigh-Ritz method, Math. Comp., 32, 687-705 (1978) · Zbl 0432.65050
[21] Chu, M. T., Inverse eigenvalue problems, SIAM Rev., 40, 1-39 (1998) · Zbl 0915.15008
[22] Gladwell, G. M.L., Inverse Problem in Vibration (1986), Martinus Nijhoff: Martinus Nijhoff Dordrecht · Zbl 0646.73013
[23] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic: Academic New York · Zbl 0618.73106
[24] Sun, J. G., Multiple eigenvalue sensitivity analysis, Linear Algebra Appl., 137-138, 183-211 (1990) · Zbl 0709.65028
[25] Seyranian, A. P.; Lund, E.; Olhoff, N., Multiple eigenvalues in structural optimization problems, Struct. Optim., 8, 207-227 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.