×

zbMATH — the first resource for mathematics

A way of updating the density function for the design of the drum. (English) Zbl 1391.74203
Summary: Designing an acoustic drum can be categorized into a class of eigenvalue optimization problems in the structural engineering area. In this paper, we propose an algorithm that is based on the Gâteaux derivative of the objective function with respect to the density functions and analyze our algorithm in detail. In the algorithm, we deal with the geometry constraint by exchanging the densities of two domains occupied by two kinds of different materials. Finally we apply this algorithm to some practical examples frequently used by the researchers and present some numerical results to show its feasibility, stability and efficiency.

MSC:
74P10 Optimization of other properties in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Overton, M. L., Large-scale optimization of eigenvalues, SIAM J. Optim., 2, 88-120, (1992) · Zbl 0757.65072
[2] Lewis, A. S., The mathematics of eigenvalue optimization, Math. Program., 97, 155-176, (2003), ISMP, 2003 (Copenhagen) · Zbl 1035.90085
[3] Shapiro, A.; Fan, M. K.H., On eigenvalue optimization, SIAM J. Optim., 5, 552-569, (1995) · Zbl 0838.90115
[4] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489-528, (2000) · Zbl 0994.74082
[5] Cox, S. J.; McLaughlin, J. R., Extremal eigenvalue problems for composite membranes, I, II, Appl. Math. Optim., 22, 153-167, (1990), 169-187 · Zbl 0709.73044
[6] Cox, S. J., Extremal eigenvalue problems for the Laplacian, (Recent Advances in Partial Differential Equations (El Escorial, 1992), RAM Res. Appl. Math., vol. 30, (1994), Masson Paris), 37-53 · Zbl 0815.35076
[7] Osher, S. J.; Santosa, F., Level set methods for optimization problems involving geometry and constraints, I, frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171, 272-288, (2001) · Zbl 1056.74061
[8] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224, (1988) · Zbl 0671.73065
[9] Allaire, G., (Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146, (2002), Springer-Verlag New York) · Zbl 0990.35001
[10] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[11] Zhao, H.-K.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179-195, (1996) · Zbl 0860.65050
[12] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028
[13] Haber, E., A multilevel, level-set method for optimizing eigenvalues in shape design problems, J. Comput. Phys., 198, 518-534, (2004) · Zbl 1051.65073
[14] G. Strang, P.-O. Persson, Circuit simulation and moving mesh generation, in: ISCIT 2004, IEEE International Symposium on Communications and Information Technology, vol. 1, 2004, pp. 17-22.
[15] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Math. Acad. Sci. Paris, 334, 1125-1130, (2002) · Zbl 1115.49306
[16] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393, (2004) · Zbl 1136.74368
[17] Burger, M.; Hackl, B.; Ring, W., Incorporating topological derivatives into level set methods, J. Comput. Phys., 194, 344-362, (2004) · Zbl 1044.65053
[18] He, L.; Kao, C.-Y.; Osher, S., Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225, 891-909, (2007) · Zbl 1122.65057
[19] Zhu, S.; Wu, Q.; Liu, C., Variational piecewise constant level set methods for shape optimization of a two-density drum, J. Comput. Phys., 229, 5062-5089, (2010) · Zbl 1194.65087
[20] Lie, J.; Lysaker, M.; Tai, X.-C., A variant of the level set method and applications to image segmentation, Math. Comp., 75, 1155-1174, (2006), (electronic) · Zbl 1096.35034
[21] Zhu, S.; Liu, C.; Wu, Q., Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum, Comput. Methods Appl. Mech. Engrg., 199, 2970-2986, (2010) · Zbl 1231.74368
[22] Lie, J.; Lysaker, M.; Tai, X.-C., A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Process., 15, 1171-1181, (2006) · Zbl 1286.94018
[23] Krein, M. G., On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl. Ser. 2, 1, 163-187, (1955) · Zbl 0066.33404
[24] Cox, S. J.; Uhlig, P. X., Where best to hold a drum fast, SIAM Rev., SIAM J. Optim., 9, 4, 948-964, (1999), Reprint [MR1724771 (2000j:35208)] · Zbl 0966.35092
[25] Cox, S. J., The two phase drum with the deepest bass note, Japan J. Ind. Appl. Math., 8, 345-355, (1991) · Zbl 0755.35029
[26] Zhang, Z.-F.; Liang, K.-W.; Cheng, X.-L., A monotonic algorithm for eigenvalue optimization in shape design problems of multi-density inhomogeneous materials, Commun. Comput. Phys., 8, 565-584, (2010) · Zbl 1364.65133
[27] Zhang, Z.-F.; Liang, K.-W.; Cheng, X.-L., Greedy algorithms for eigenvalue optimization problems in shape design of two-density inhomogeneous materials, Int. J. Comput. Math., 88, 183-195, (2011) · Zbl 1211.65150
[28] S. Su, Numerical approaches on shape optimization of elliptic eigenvalue problems and shape study of human brains, Doctorial Thesis, Ohio State University, 2010.
[29] Tai, X.-C.; Chan, T. F., A survey on multiple level set methods with applications for identifying piecewise constant functions, Int. J. Numer. Anal. Model., 1, 25-47, (2004) · Zbl 1076.49020
[30] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities, (1952), Cambridge University Press · Zbl 0047.05302
[31] Cox, S. J., The generalized gradient at a multiple eigenvalue, J. Funct. Anal., 133, 30-40, (1995) · Zbl 0884.47008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.