×

Reliability-sensitivity analysis using dimension reduction methods and saddlepoint approximations. (English) Zbl 1352.74091

Summary: Reliability-sensitivity, which is considered as an essential component in engineering design under uncertainty, is often of critical importance toward understanding the physical systems underlying failure and modifying the design to mitigate and manage risk. This paper presents a new computational tool for predicting reliability (failure probability) and reliability-sensitivity of mechanical or structural systems subject to random uncertainties in loads, material properties, and geometry. The dimension reduction method is applied to compute response moments and their sensitivities with respect to the distribution parameters (e.g., shape and scale parameters, mean, and standard deviation) of basic random variables. Saddlepoint approximations with truncated cumulant generating functions are employed to estimate failure probability, probability density functions, and cumulative distribution functions. The rigorous analytic derivation of the parameter sensitivities of the failure probability with respect to the distribution parameters of basic random variables is derived. Results of six numerical examples involving hypothetical mathematical functions and solid mechanics problems indicate that the proposed approach provides accurate, convergent, and computationally efficient estimates of the failure probability and reliability-sensitivity.

MSC:

74E35 Random structure in solid mechanics
62N05 Reliability and life testing
62P30 Applications of statistics in engineering and industry; control charts
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schuëller, On the treatment of uncertainties in structural mechanics and analysis, Computers & Structures 85 (5-6) pp 235– (2007) · Zbl 1173.74332 · doi:10.1016/j.compstruc.2006.10.009
[2] Haldar, Probability, Reliability and Statistical Methods in Engineering Design (2000)
[3] Choi, Reliability-Based Structural Design (2007) · Zbl 1114.93001
[4] Choi, Structural Sensitivity Analysis and Optimization 1 (2005)
[5] Picheny, Application of bootstrap method in conservative estimation of reliability with limited samples, Structural and Multidisciplinary Optimization 41 (2) pp 205– (2010) · Zbl 1274.62677 · doi:10.1007/s00158-009-0419-8
[6] Chakraborty, Probabilistic safety analysis of structures under hybrid uncertainty, International Journal for Numerical Methods in Engineering 70 (4) pp 405– (2007) · Zbl 1194.74547 · doi:10.1002/nme.1883
[7] Chen, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty, Journal of Mechanical Design (ASME) 127 (5) pp 875– (2005) · doi:10.1115/1.1904642
[8] Liu, Relative entropy based method for probabilistic sensitivity analysis in engineering design, Journal of Mechanical Design (ASME) 128 (2) pp 326– (2006) · doi:10.1115/1.2159025
[9] Li, Dynamic response and reliability analysis of structures with uncertain parameters, International Journal for Numerical Methods in Engineering 76 (6) pp 881– (2008)
[10] Karamchandani, Sensitivity estimation within first and second order reliability methods, Structural Safety 11 (2) pp 95– (1991) · doi:10.1016/0167-4730(92)90002-5
[11] Ditlevsen, Structural Reliability Methods (1996)
[12] Zhang, Reliability sensitivity for rotor-stator system with rubbing, Journal of Sound and Vibration 259 (5) pp 1095– (2003) · doi:10.1006/jsvi.2002.5117
[13] Haukaas, Parameter sensitivity and importance measures in nonlinear finite element reliability analysis, Journal of Engineering Mechanics (ASCE) 131 (10) pp 1013– (2005) · doi:10.1061/(ASCE)0733-9399(2005)131:10(1013)
[14] Guo, Reliability sensitivity analysis with random and interval variables, International Journal for Numerical Methods in Engineering 78 (13) pp 1585– (2009) · Zbl 1171.74463 · doi:10.1002/nme.2543
[15] Sues, System reliability and sensitivity factors via the MPPSS method, Probabilistic Engineering Mechanics 20 (2) pp 148– (2005) · doi:10.1016/j.probengmech.2005.02.001
[16] Song, System reliability and sensitivity under statistical dependence by matrix-based system reliability method, Structural Safety 31 (2) pp 148– (2009) · doi:10.1016/j.strusafe.2008.06.012
[17] Schuëller, A critical appraisal of reliability estimation procedures for high dimensions, Probabilistic Engineering Mechanics 19 (4) pp 463– (2004) · doi:10.1016/j.probengmech.2004.05.004
[18] Schuëller, Uncertainty analysis of complex structural systems, International Journal for Numerical Methods in Engineering 80 (6) pp 881– (2009) · Zbl 1176.74214 · doi:10.1002/nme.2549
[19] Melchers, A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability, Computer & Structure 82 (1) pp 55– (2004) · doi:10.1016/j.compstruc.2003.08.003
[20] Ahammed, Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis, Reliability Engineering & System Safety 91 (5) pp 594– (2006) · doi:10.1016/j.ress.2005.04.005
[21] Wu, Variable screening and ranking using sampling-based sensitivity measures, Reliability Engineering & System Safety 91 (6) pp 634– (2006) · doi:10.1016/j.ress.2005.05.004
[22] Helton, Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliability Engineering & System Safety 91 (10/11) pp 1175– (2006) · doi:10.1016/j.ress.2005.11.017
[23] Wu, Computational methods for efficient structural reliability and reliability sensitivity analysis, AIAA Journal 32 (8) pp 1717– (1994) · Zbl 0925.73596 · doi:10.2514/3.12164
[24] Au, Reliability-based design sensitivity by efficient simulation, Computer & Structure 83 (14) pp 1048– (2005) · doi:10.1016/j.compstruc.2004.11.015
[25] Lu, Reliability sensitivity method by line sampling, Structural Safety 30 (6) pp 517– (2008) · doi:10.1016/j.strusafe.2007.10.001
[26] Rahman, A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics, Probabilistic Engineering Mechanics 19 (4) pp 393– (2004) · doi:10.1016/j.probengmech.2004.04.003
[27] Xu, A generalized dimension-reduction method for multidimensional integration in stochastic mechanics, International Journal for Numerical Methods in Engineering 61 (12) pp 1992– (2004) · Zbl 1075.74707 · doi:10.1002/nme.1135
[28] Youn, Eigenvector dimension reduction method for sensitivity-free probability analysis, Structural and Multidisciplinary Optimization 37 (1) pp 13– (2008) · Zbl 1273.74574 · doi:10.1007/s00158-007-0210-7
[29] Rao, Enhanced high-dimensional model representation for reliability analysis, International Journal for Numerical Methods in Engineering 77 (5) pp 719– (2009) · Zbl 1156.74371 · doi:10.1002/nme.2440
[30] Rahman, Stochastic sensitivity analysis by dimensional decomposition and score functions, Probabilistic Engineering Mechanics 24 (3) pp 278– (2009) · doi:10.1016/j.probengmech.2008.07.004
[31] Lee, Sensitivity analyses of FORM-based and DRM-based performance measure approach (PMA) for reliability-based design optimization (RBDO), International Journal for Numerical Methods in Engineering 82 (1) pp 26– (2010) · Zbl 1183.74212
[32] Lee, Dimension reduction method for reliability-based robust design optimization, Computers & Structures 86 (13-14) pp 1550– (2010) · doi:10.1016/j.compstruc.2007.05.020
[33] Youn, Reliability-based robust design optimization using the eigenvector dimension reduction(EDR) method, Structural and Multidisciplinary Optimization 37 (5) pp 475– (2009) · Zbl 06227620 · doi:10.1007/s00158-008-0239-2
[34] Huang, Uncertainty analysis by dimension reduction integration and saddlepoint approximations, Journal of Mechanical Design (ASME) 128 (1) pp 26– (2006) · doi:10.1115/1.2118667
[35] Du, Saddlepoint approximation for sequential optimization and reliability analysis, Journal of Mechanical Design (ASME) 130 (1) pp 011011– (2008) · doi:10.1115/1.2717225
[36] Du, System reliability analysis with saddlepoint approximation, Structural and Multidisciplinary Optimization 42 (2) pp 193– (2010) · Zbl 1274.90116 · doi:10.1007/s00158-009-0478-x
[37] Wang, Reliability analysis using a ’Taylor expansion-expected value’ saddlepoint approximation, International Journal of Reliability and Safety 5 (1) pp 44– (2011) · doi:10.1504/IJRS.2011.037346
[38] Daniels, Saddlepoint approximations in statistics, Annals of Mathematical Statistics 25 (4) pp 631– (1954) · Zbl 0058.35404 · doi:10.1214/aoms/1177728652
[39] Butler, Saddlepoint Approximations with Applications (2007) · Zbl 1183.62001 · doi:10.1017/CBO9780511619083
[40] Rosenblatt, Remarks on a multivariate transformation, The Annals of Mathematical Statistics 23 (3) pp 470– (1952) · Zbl 0047.13104 · doi:10.1214/aoms/1177729394
[41] Wang, General saddlepoint approximations in the bootstrap, Statistics & Probability Letters 13 (1) pp 61– (1992) · doi:10.1016/0167-7152(92)90237-Y
[42] Gillespie, An improved saddlepoint approximation, Mathematical Biosciences 208 (2) pp 359– (2007) · Zbl 1119.62012 · doi:10.1016/j.mbs.2006.08.026
[43] Millwater, Universal properties of kernel functions for probabilistic sensitivity analysis, Probabilistic Engineering Mechanics 24 (1) pp 89– (2009) · doi:10.1016/j.probengmech.2008.01.005
[44] Madsen, Methods of Structural Safety (1986)
[45] Der Kiureghian, Second-order reliability approximations, Journal of Engineering Mechanics (ASCE) 113 (8) pp 1208– (1987) · doi:10.1061/(ASCE)0733-9399(1987)113:8(1208)
[46] Zhao, Moment methods for structural reliability[J], Structural Safety 23 (1) pp 47– (2001) · doi:10.1016/S0167-4730(00)00027-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.