×

One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles. (English) Zbl 1448.76113

Summary: The lattice Boltzmann method (LBM) has been widely considered as a distinctive and reliable approach for simulating the complex particulate flows. As an intrinsic kinetic scheme, it is quite convenient for LBM to apply the bounce-back (BB) type methods to handle the moving boundaries with complicated geometry, which is a tricky task for general interface-resolved methods. However, the two major schemes in LBM, i.e., the simple BB rule and the curved boundary condition (CBC) are presently encountered by the problems of low precision and loss of local computation, respectively. To overcome those two deficiencies in the boundary treatment simultaneously, a one-point second-order CBC is proposed in this paper. Information of only a single node is required in the present scheme, and the second-order accuracy is validated in the channel flow and cylindrical Couette flow. Applications to the particulate flows are further implemented to verify the present scheme. Numerical results are in good agreement with those in the literature.

MSC:

76M28 Particle methods and lattice-gas methods
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, S.; Marshall, J. S.; Liu, G.; Yao, Q., Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering, Prog. Energy Combust. Sci., 37, 6, 633-668 (2011)
[2] Maxey, M., Simulation methods for particulate flows and concentrated suspensions, Annu. Rev. Fluid Mech., 49, 171-193 (2017) · Zbl 1359.76232
[3] Wang, L. P.; Ayala, O.; Gao, H.; Andersen, C.; Mathews, K. L., Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach, Comput. Math. Appl., 67, 2, 363-380 (2014) · Zbl 1381.76136
[4] Ladd, A. J., Lattice-Boltzmann methods for suspensions of solid particles, Mol. Phys., 113, 17-18, 2531-2537 (2015)
[5] Jaensson, N. O.; Hulsen, M. A.; Anderson, P. D., Simulations of the start-up of shear flow of 2D particle suspensions in viscoelastic fluids: structure formation and rheology, J. Non-Newtonian Fluid Mech., 225, 70-85 (2015)
[6] Delouei, A. A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S., Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach, Physica A, 447, 1-20 (2016) · Zbl 1400.76010
[7] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2, 363-426 (2001) · Zbl 1047.76097
[8] Lomholt, S.; Maxey, M. R., Force-coupling method for particulate two-phase flow: Stokes flow, J. Comput. Phys., 184, 2, 381-405 (2003) · Zbl 1047.76100
[9] Ladd, A. J.C.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. Statist. Phys., 104, 5-6, 1191-1251 (2001) · Zbl 1046.76037
[10] Mountrakis, L.; Lorenz, E.; Hoekstra, A. G., Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles, Phys. Rev. E, 96, 1, Article 013302 pp. (2017)
[11] Ladd, A. J., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 271, 285-309 (1994) · Zbl 0815.76085
[12] Peng, C.; Teng, Y.; Hwang, B.; Guo, Z.; Wang, L. P., Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow, Comput. Math. Appl., 72, 2, 349-374 (2016) · Zbl 1358.76061
[13] Tao, S.; Guo, Z., Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime, Phys. Rev. E, 91, 4, Article 043305 pp. (2015)
[14] Junk, M.; Yang, Z., One-point boundary condition for the lattice Boltzmann method, Phys. Rev. E, 72, 6, Article 066701 pp. (2005)
[15] Peng, C.; Geneva, N.; Guo, Z.; Wang, L. P., Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method, Phys. Rev. E, 95, 1, Article 013301 pp. (2017)
[16] Aidun, C. K.; Lu, Y.; Ding, E. J., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech., 373, 287-311 (1998) · Zbl 0933.76092
[17] Qi, D., Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J. Fluid Mech., 385, 41-62 (1999) · Zbl 0938.76089
[18] Nash, R. W.; Carver, H. B.; Bernabeu, M. O.; Hetherington, J.; Groen, D.; Krüger, T.; Coveney, P. V., Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains, Phys. Rev. E, 89, 2, Article 023303 pp. (2014)
[19] A.J. Tinet, J. Wu, L. Scholtès, M. Buès, A comparative study of five boundary treatment schemes for stationary complex boundaries in the lattice Boltzmann method, in: 13èes Journéess d’études des Milieux Poreux 2016, 2016, October.; A.J. Tinet, J. Wu, L. Scholtès, M. Buès, A comparative study of five boundary treatment schemes for stationary complex boundaries in the lattice Boltzmann method, in: 13èes Journéess d’études des Milieux Poreux 2016, 2016, October.
[20] Ginzburg, I.; d’Humieres, D., Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 6, Article 066614 pp. (2003)
[21] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 1, 219-228 (1998) · Zbl 0917.76061
[22] Mei, R.; Luo, L. S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155, 2, 307-330 (1999) · Zbl 0960.82028
[23] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14, 6, 2007-2010 (2002) · Zbl 1185.76156
[24] Dorschner, B.; Chikatamarla, S. S.; Bösch, F.; Karlin, I. V., Grad’s approximation for moving and stationary walls in entropic lattice Boltzmann simulations, J. Comput. Phys., 295, 340-354 (2015) · Zbl 1349.76676
[25] Bouzidi, M. H.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 11, 3452-3459 (2001) · Zbl 1184.76068
[26] Lallemand, P.; Luo, L. S., Lattice Boltzmann method for moving boundaries, J. Comput. Phys., 184, 2, 406-421 (2003) · Zbl 1062.76555
[27] Yu, D.; Mei, R.; Luo, L. S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci., 39, 5, 329-367 (2003)
[28] Geneva, N.; Peng, C.; Li, X.; Wang, L. P., A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method, Parallel Comput., 67, 20-37 (2017)
[29] Xu, A.; Shi, L.; Zhao, T. S., Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management, Int. J. Heat Mass Transfer, 109, 577-588 (2017)
[30] Huang, J.; Yong, W. A., Boundary conditions of the lattice Boltzmann method for convection-diffusion equations, J. Comput. Phys., 300, 70-91 (2015) · Zbl 1349.76692
[31] Huang, J.; Hu, Z.; Yong, W. A., Second-order curved boundary treatments of the lattice Boltzmann method for convection-diffusion equations, J. Comput. Phys., 310, 26-44 (2016) · Zbl 1349.76691
[32] W. Zhao, W.A. Yong, A family of single-node second-order boundary schemes for the lattice Boltzmann method, 2017. arXiv preprint arXiv:1712.08288; W. Zhao, W.A. Yong, A family of single-node second-order boundary schemes for the lattice Boltzmann method, 2017. arXiv preprint arXiv:1712.08288
[33] Meng, X.; Guo, Z., Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method, Phys. Rev. E, 94, 5, Article 053307 pp. (2016)
[34] L. Zhang, S. Yang, Z. Zeng, J. W,. Chew, Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method, 2018.; L. Zhang, S. Yang, Z. Zeng, J. W,. Chew, Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method, 2018.
[35] Zhao, W.; Yong, W. A., Single-node second-order boundary schemes for the lattice Boltzmann method, J. Comput. Phys., 329, 1-15 (2017) · Zbl 1406.76075
[36] Yong, W. A.; Zhao, W.; Luo, L. S., Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration, Phys. Rev. E, 93, 3, Article 033310 pp. (2016)
[37] Zhao, W.; Yong, W. A., Maxwell iteration for the lattice Boltzmann method with diffusive scaling, Phys. Rev. E, 95, 3, Article 033311 pp. (2017)
[38] Qian, Y. H.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, EPL (Europhys. Lett.), 17, 6, 479 (1992) · Zbl 1116.76419
[39] Guo, Z.; Shu, C., Lattice Boltzmann Method and Its Applications in Engineering (2013), World Scientific · Zbl 1278.76001
[40] Luo, L. S.; Liao, W.; Chen, X.; Peng, Y.; Zhang, W., Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E, 83, 5, Article 056710 pp. (2011)
[41] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour., 28, 11, 1171-1195 (2005)
[42] Ginzburg, I.; Verhaeghe, F.; d’Humieres, D., Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme, Commun. Comput. Phys., 3, 3, 519-581 (2008)
[43] Chun, B.; Ladd, A. J.C., Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps, Phys. Rev. E, 75, 6, Article 066705 pp. (2007)
[44] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 6, 1591-1598 (1997) · Zbl 1185.76873
[45] Slaouti, A.; Stansby, P. K., Flow around two circular cylinders by the random-vortex method, J. Fluids Struct., 6, 6, 641-670 (1992)
[46] Meneghini, J. R.; Saltara, F.; Siqueira, C. L.R.; Ferrari, J. A., Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements, J. Fluids Struct., 15, 2, 327-350 (2001)
[47] Ding, H.; Shu, C.; Yeo, K. S.; Xu, D., Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods, Int. J. Numer. Methods Fluids, 53, 2, 305-332 (2007) · Zbl 1105.76041
[48] Hu, Y.; Yuan, H.; Shu, S.; Niu, X.; Li, M., An improved momentum exchanged-based immersed boundary-lattice Boltzmann method by using an iterative technique, Comput. Math. Appl., 68, 3, 140-155 (2014) · Zbl 1369.76045
[49] Zhao-Li, G.; Chu-Guang, Z.; Bao-Chang, S., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 4, 366 (2002)
[50] Zdravkovich, M. M., Review of flow interference between two circular cylinders in various arrangements, J. Fluids Eng., 99, 4, 618-633 (1977)
[51] Wen, B.; Zhang, C.; Tu, Y.; Wang, C.; Fang, H., Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations, J. Comput. Phys., 266, 161-170 (2014) · Zbl 1362.76044
[52] Tao, S.; Hu, J.; Guo, Z., An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows, Comput. Fluids, 133, 1-14 (2016) · Zbl 1390.76771
[53] Feng, Z. G.; Michaelides, E. E., Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows, Comput. & Fluids, 38, 2, 370-381 (2009) · Zbl 1237.76137
[54] Xia, Z.; Connington, K. W.; Rapaka, S.; Yue, P.; Feng, J. J.; Chen, S., Flow patterns in the sedimentation of an elliptical particle, J. Fluid Mech., 625, 249-272 (2009) · Zbl 1171.76362
[55] Chen, Y.; Cai, Q.; Xia, Z.; Wang, M.; Chen, S., Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions, Phys. Rev. E, 88, 1, Article 013303 pp. (2013)
[56] Akiki, G.; Moore, W. C.; Balachandar, S., Pairwise-interaction extended point-particle model for particle-laden flows, J. Comput. Phys., 351, 329-357 (2017)
[57] Yacoubi, A. El.; Xu, S.; Wang, Z. J., Computational study of the interaction of freely moving particles at intermediate Reynolds numbers, J. Fluid Mech., 705, 134-148 (2012) · Zbl 1250.76171
[58] Luo, K.; Wei, A.; Wang, Z.; Fan, J., Fully-resolved DNS study of rotation behaviors of one and two particles settling near a vertical wall, Powder Technol., 245, 115-125 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.