×

zbMATH — the first resource for mathematics

Cocompactly cubulated 2-dimensional Artin groups. (English) Zbl 1401.20044
Summary: We give a necessary and sufficient condition for a 2-dimensional or a three-generator Artin group \(A\) to be (virtually) cocompactly cubulated, in terms of the defining graph of \(A\).

MSC:
20F65 Geometric group theory
20F36 Braid groups; Artin groups
20F67 Hyperbolic groups and nonpositively curved groups
57M07 Topological methods in group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] P. Abramenko and K. S Brown, Buildings: theory and applications, Springer Science & Business Media, 2008.Zbl 1214.20033 MR 2439729 · Zbl 1214.20033
[2] J. Behrstock, M. F. Hagen and A. Sisto, Hierarchically hyperbolic spaces I: curve complexes for cubical groups, 2014.arXiv:1412.2171 Math., 134 (2012), no. 3, 843–859Zbl 1279.20051 MR 2931226 · Zbl 1439.20043
[3] M. Bestvina, B. Kleiner and M. Sageev, The asymptotic geometry of right-angled Artin groups. I, Geom. Topol., 12 (2008), no. 3, 1653–1699. Zbl 1203.20038 MR 2421136 · Zbl 1203.20038
[4] M. Bestvina, B. Kleiner and M. Sageev, Quasiflats in CAT(0) complexes, 2008. arXiv:0804.2619 · Zbl 1368.20047
[5] T. Brady and J. P. McCammond, Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra, 151 (2000), no. 1, 1–9.Zbl 1004.20023 MR 1770639 · Zbl 1004.20023
[6] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.Zbl 0988.53001 MR 1744486
[7] M. R. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc., 127 (1999), no 7, 2143–2146.Zbl 0928.52007 MR 1646316 · Zbl 0928.52007
[8] A. M. Brunner, Geometric quotients of link groups, Topology and its Applications, 48 (1992), no. 3, 245–262.Zbl 0774.57004 MR 1200426 · Zbl 0774.57004
[9] N. Bourbaki, Éléments de mathématique, Fasc. XXXIV. Groupes et algébres de Lie, Chapitre IV: Groupes de Coxeter et systémes de Tits; Chapitre V: Groupes engendrés par des réflexions; Chapitre VI: Systémes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968.Zbl 0186.33001 MR 0240238
[10] P.-E. Caprace and B. Mühlherr, Reflection triangles in Coxeter groups and biautomaticity, J. Group Theory, 8 (2005), no. 4, 467–489.Zbl 1081.20049 MR 2152693 · Zbl 1081.20049
[11] P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes, Geometric and functional analysis, 21 (2011), no. 4, 851–891.Zbl 1266.20054 MR 2827012 · Zbl 1266.20054
[12] R. Charney, An introduction to right-angled Artin groups, Geometriae Dedicata, 125(2007), no. 1, 141–158.Zbl 1152.20031 MR 2322545 · Zbl 1152.20031
[13] R. Charney and M. W. Davis, Finite K.; 1/s for Artin groups, in Prospects in topology (Princeton, NJ, 1994), 110–124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ, 1995.Zbl 0930.55006 MR 1368655
[14] R. Charney and M. W. Davis, The K.; 1/-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc., 8 (1995), no. 3, 597–627.Zbl 0833.51006 MR 1303028 Lond. Math. Soc., 46 (2014), no. 6, 1248–1255.Zbl 1308.20037 MR 3291260 · Zbl 0833.51006
[15] I. Chatterji and G. Niblo, From wall spaces to CAT(0) cube complexes, Internat. J. Algebra Comput., 15 (2005), no. 5-6, 875–885.Zbl 1107.20027 MR 2197811 · Zbl 1107.20027
[16] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math., 17(1972), 273–302.Zbl 0238.20034 MR 0422673 · Zbl 0238.20034
[17] T. Haettel, Cocompactly cubulated Artin–Tits groups, 2015.arXiv:1509.08711
[18] M. F. Hagen and P. Przytycki, Cocompactly cubulated graph manifolds, Israel J. Math., 207 (2015), no. 1, 377–394.Zbl 1330.57030 MR 3358051 · Zbl 1330.57030
[19] M. F. Hagen and D. T. Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal., 25 (2015), no. 1, 134–179.Zbl 06422799 MR 3320891 · Zbl 1368.20050
[20] F. Haglund, Finite index subgroups of graph products, Geometriae Dedicata, 135(2008), no. 1, 167–209.Zbl 1195.20047 MR 2413337 · Zbl 1195.20047
[21] F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal., 17 (2008), no. 5, 1551–1620.Zbl 1155.53025 MR 2377497 · Zbl 1155.53025
[22] S. M. Hermiller and J. Meier, Artin groups, rewriting systems and threemanifolds, Journal of Pure and Applied Algebra, 136 (1999), no. 2, 141–156. Zbl 0936.20033 MR 1674774 · Zbl 0936.20033
[23] G. C. Hruska and D. T. Wise, Finiteness properties of cubulated groups, Compos. Math., 150 (2014), no. 3, 453–506.Zbl 1335.20043 MR 3187627 · Zbl 1335.20043
[24] J. Huang, Quasi-isometry rigidity of right-angled Artin groups, I. The finite out case, 2014.arXiv:1410.8512
[25] J. Huang, Top dimensional quasiflats in CAT(0) cube complexes, 2014. arXiv:1410.8195 · Zbl 1439.20045
[26] J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2), 175 (2012), no. 3, 1127–1190. Zbl 1254.57014 MR 2912704 · Zbl 1254.57014
[27] B. Kleiner, The local structure of length spaces with curvature bounded above, Mathematische Zeitschrift, 231 (1999), no. 3, 409–456.Zbl 0940.53024 MR 1704987 · Zbl 0940.53024
[28] Y. Liu, Virtual cubulation of nonpositively curved graph manifolds, J. Topol., 6(2013), no. 4, 793–822.Zbl 1286.57002 MR 3145140 · Zbl 1286.57002
[29] L. Mosher, M. Sageev and K. Whyte, Quasi-actions on trees, II. Finite depth Bass–Serre trees, Mem. Amer. Math. Soc., 214 (2011), no. 1008, vi+105pp. Zbl 1234.20034 MR 2867450 Topol., 1 (1997), (electronic).Zbl 0887.20016 MR 1432323 · Zbl 1234.20034
[30] B. Nica, Cubulating spaces with walls, Algebr. Geom. Topol., 4 (2004), 297–309 (electronic).Zbl 1131.20030 MR 2059193 · Zbl 1131.20030
[31] Y. Ollivier and D. T. Wise, Cubulating random groups at density less than 1=6, Trans. Amer. Math. Soc., 363 (2011), no. 9, 4701–4733.Zbl 1277.20048 MR 2806688 · Zbl 1277.20048
[32] P. Przytycki and D. T. Wise, Mixed 3-manifolds are virtually special, 2012. arXiv:1205.6742v2 · Zbl 1331.57023
[33] P. Przytycki and D. T. Wise, Graph manifolds with boundary are virtually special. J. Topol., 7 (2014), no. 2, 419–435.Zbl 1331.57023 MR 3217626 · Zbl 1331.57023
[34] M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3), 71 (1995), no. 3, 585–617.Zbl 0861.20041 MR 1347406 · Zbl 0861.20041
[35] M. Sageev, CAT(0) cube complexes and groups, in Geometric group theory, 7–54, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence, RI, 2014. Zbl 1306.20002 MR 3329724
[36] M. Sageev and D. T. Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc., 37 (2005), no. 5, 706–710.Zbl 1081.20051 MR 2164832 · Zbl 1081.20051
[37] J. Świa\ctkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata, 118 (2006), 23–48.Zbl 1165.20036 MR 2239447 · Zbl 1165.20036
[38] H. van der Lek, The homotopy type of complex hyperplane complements, Katholieke Universiteit te Nijmegen, 1983
[39] S. Wenger, The asymptotic rank of metric spaces, Comment. Math. Helv., 86 (2011), no. 2, 247–275.Zbl 1217.49033 MR 2775129 · Zbl 1217.49033
[40] B. T. Williams, Two topics in geometric group theory, PhD thesis, University of Southampton, 1998.
[41] D. T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal., 14 (2004), no. 1, 150–214.Zbl 1071.20038 MR 2053602 · Zbl 1071.20038
[42] D. T. Wise, The structure of groups with a quasiconvex hierarchy, 2011. Available at:http://www.math.mcgill.ca/wise/papers.html
[43] D. T. Wise, Cubular tubular groups, Trans. Amer. Math. Soc., 366 (2014), no. 10, 5503–5521.Zbl 06346335 MR 3240932 · Zbl 1346.20058
[44] D. T. Wise and D. J. Woodhouse, A cubical flat torus theorem and the bounded packing property, 2015.arXiv:1510.00365 J. Huang, Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada E-mail:jingyin.huang@mcgill.ca K. Jankiewicz, Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada E-mail:kasia@math.mcgill.ca P. Przytycki, Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada E-mail:piotr.przytycki@mcgill.ca IntroductionRemarksSome historical backgroundProof outline for (i) (iii) in Theorem 1.1OrganizationPreliminariesAsymptotic rankGate and parallel setCocompact coresCombinatorial convex hull of a flatProduct of hyperbolic groupsArtin groupsBackground on Artin groupsTwo-generator Artin groupsSurface lemmaThe main theoremImplication (iii) (i)Implication (ii) (iii)3-generator Artin groups
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.