×

zbMATH — the first resource for mathematics

A local search using solution fragments for the 2-machine bicriteria scheduling problem. (English) Zbl 1181.90118
Summary: We introduce a local search strategy for combinatorial optimization problems which explores neighborhoods obtained using fragments of current solutions. We apply the approach to the well-known \(\mathcal{NP}\)-hard 2-machine bicriteria flowshop scheduling problem. Computational experiments using benchmark data show the approach to be effective when compared to other algorithms available for the problem.
MSC:
90B35 Deterministic scheduling theory in operations research
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, C.L., Bulfin, R.L.: Complexity results for multi-machine multi-criteria scheduling problems. In: Proceedings of the Third Industrial Engineering Research Conference, pp. 662–665. Institute of Industrials Engineers, Georgia (1994)
[2] Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley, Reading (1967) · Zbl 1058.90500
[3] Gupta, J.N.D., Hennig, K., Werner, F.: Local search heuristics for two-stage flow shop problems with secondary criterion. Comput. Oper. Res. 29, 123–149 (2002) · Zbl 1026.90103 · doi:10.1016/S0305-0548(00)00061-7
[4] Gupta, J.N.D., Neppalli, V.R., Werner, F.: Minimizing total flow time in a two-machine flowshop problem with minimum makespan. International J. Prod. Econ. 69, 323–338 (2001) · doi:10.1016/S0925-5273(00)00039-6
[5] Gupta, J.N.D., Palanimuthu, N., Chen, C.L.: Designing a tabu search algorithm for the two-stage flowshop problem with secondary criterion. Prod. Plan. Control 10, 251–265 (1999) · doi:10.1080/095372899233217
[6] Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1, 61–68 (1954) · Zbl 1349.90359 · doi:10.1002/nav.3800010110
[7] Neppalli, V.R., Chen, C.L., Gupta, J.N.D.: Genetic algorithm for the two-stage bicriteria flowshop problem. Eur. J. Oper. Res. 95, 356–373 (1996) · Zbl 0943.90584 · doi:10.1016/0377-2217(95)00275-8
[8] Rajendran, C.: Two-stage flow shop scheduling problem with bicriteria. J. Oper. Res. Soc. 43(9), 871–884 (1992) · Zbl 0757.90037
[9] T’Kindt, V., Gupta, J.N.D., Billaut, J.-C.: A branch-and-bound algorithm to solve a two-machine bicriteria flowshop scheduling problem. Presented at ORP3 2001 – Operational Research Peripatetic Post-graduate Programme Conference, Paris, 2001
[10] T’Kindt, V., Monmarché, N., Tercinet, F., Laügt, D.: An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. Eur. J. Oper. Res. 142, 250–257 (2002) · Zbl 1082.90592 · doi:10.1016/S0377-2217(02)00265-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.