×

Ray-Knight theorems related to a stochastic flow. (English) Zbl 1028.60075

The stochastic flow of homeomorphisms of \(\mathbb R\) associated with a stochastic differential equation \[ X_{t}(x) = x + \beta _1\int ^{t}_{0} \mathbf 1_{\{X_{s}(x)\leq 0\}} ds+ \beta _2\int ^{t}_{0} \mathbf 1_{\{X_{s}(x)> 0\}} ds+ B_{t}, \quad x\in \mathbb R, \;t\geq 0, \] is studied, \(B\) being a one-dimensional Wiener process and \(\beta _1, \beta _2\in \mathbb R\) fixed constants. First, it is shown that there exists an almost surely bicontinuous process \((L^{x}_{t}, t\geq 0,x\in \mathbb R)\) such that \((L^{x}_{t}, t\geq 0)\) is the semimartingale local time at 0 for the process \(X_{t}(x)\) for each \(x\in \mathbb R\). Consider stopping times \[ T(a) = \inf \{t>0; X_{t}(a) = 0\}, \quad \tau _{r}(a) = \inf \{ t>0; L^{a}_{t} >r\}, \;a\in \mathbb R, \;r\geq 0. \] Under suitable assumptions on \(\beta _1\), \(\beta _2\) it is proven that processes like \((L^{a+x}_{T(a)}, x\geq 0)\) or \((L^{b+x}_{\tau _{r}(b)}, x\geq 0)\) are inhomogeneous diffusions whose generators are computed explicitly. The derivative \(DX_{t}(x)\) of the (increasing) function \(x\mapsto X_{t}(x)\) satisfies \(DX_{t}(x) = \exp ((\beta _2-\beta _1)L^{x}_{t})\), therefore, \((DX_{T}(x), x\in \mathbb R)\) is also a diffusion for certain stopping times \(T\). These results complement and extend those obtained by R. F. Bass and K. Burdzy [Ann. Probab. 27, 50-108 (1999; Zbl 0943.60087)].

MSC:

60J55 Local time and additive functionals
60J60 Diffusion processes

Citations:

Zbl 0943.60087
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aldous, D., Brownian excursion conditioned on its local time, Electron. Comm. Probab., 3, 79-90 (1998) · Zbl 0914.60049
[2] Barlow, M.T., Burdzy, K., Kaspi, H., Mandelbaum, A., 1999. Variably skewed Brownian motion. preprint.; Barlow, M.T., Burdzy, K., Kaspi, H., Mandelbaum, A., 1999. Variably skewed Brownian motion. preprint.
[3] Bass, R. F.; Burdzy, K., Stochastic bifurcation models, Ann. Probab., 27, 50-108 (1999) · Zbl 0943.60087
[4] Bouleau, N., Sur la variation quadratique de certaines mesures vectorielles, Z. Wahrsch. verw. Gebiete, 61, 283-290 (1982) · Zbl 0492.60078
[5] Burdzy, K., Chen, Z.Q., 1999. Local time flow related to skew Brownian motion. preprint.; Burdzy, K., Chen, Z.Q., 1999. Local time flow related to skew Brownian motion. preprint. · Zbl 1037.60057
[6] Carverhill, A.; Elworthy, K. D., Flows of stochastic dynamical systems: the functional analytic approach, Z. Wahrsch. verw. Gebiete, 65, 245-268 (1984) · Zbl 0525.60065
[7] Dellacherie, C., Maisonneuve, B., Meyer, P.A., 1992. Probabilités et Potentiel: Processus de Markov (fin) Compléments de Calcul Stochastique. Hermann, Paris.; Dellacherie, C., Maisonneuve, B., Meyer, P.A., 1992. Probabilités et Potentiel: Processus de Markov (fin) Compléments de Calcul Stochastique. Hermann, Paris.
[8] Ethier, S.N., Kurtz, T.G., 1986. Markov Processes: Characterization and Convergence. Wiley, New York.; Ethier, S.N., Kurtz, T.G., 1986. Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[9] Jeulin, Th., 1984. Ray-Knight’s theorem on Brownian local times and Tanaka’s formula. Sem. Stochastic Process 1983, Gainesville, Fla. Birkhäuser, Boston, pp. 131-142.; Jeulin, Th., 1984. Ray-Knight’s theorem on Brownian local times and Tanaka’s formula. Sem. Stochastic Process 1983, Gainesville, Fla. Birkhäuser, Boston, pp. 131-142.
[10] Karatzas, I., Shreve, S.E., 1991. Brownian Motion and Stochastic Calculus, 2nd Edition. Springer, New York.; Karatzas, I., Shreve, S.E., 1991. Brownian Motion and Stochastic Calculus, 2nd Edition. Springer, New York. · Zbl 0734.60060
[11] Kunita, H., 1984. Stochastic differential equations and stochastic flows of diffeomorphisms École d’été de Probabilités de Saint-Flour XII (1982) Lect. Notes Math., Vol. 1097. Springer, Berlin, pp. 143-303.; Kunita, H., 1984. Stochastic differential equations and stochastic flows of diffeomorphisms École d’été de Probabilités de Saint-Flour XII (1982) Lect. Notes Math., Vol. 1097. Springer, Berlin, pp. 143-303.
[12] Le Gall, J. F.; Yor, M., Enlacements du mouvement brownien autour des courbes de l’espace, Trans. Amer. Math. Soc., 317, 687-722 (1990) · Zbl 0696.60072
[13] Meyer, P.A., 1981. Flot d’une équation differentielle stochastique. in: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math., Vol. 850. Springer, Berlin, pp. 103-117.; Meyer, P.A., 1981. Flot d’une équation differentielle stochastique. in: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math., Vol. 850. Springer, Berlin, pp. 103-117. · Zbl 0461.60076
[14] Norris, J. R.; Rogers, L. C.G.; Williams, D., Self-avoiding random walk: a Brownian motion model with local time drift, Probab. Theory Related Fields, 74, 271-287 (1987) · Zbl 0611.60052
[15] Revuz, D., Yor, M., 1998. Continuous Martingales and Brownian Motion. (3rd edition). Springer, New York.; Revuz, D., Yor, M., 1998. Continuous Martingales and Brownian Motion. (3rd edition). Springer, New York. · Zbl 0917.60006
[16] Rogers, L. C.G.; Walsh, J. B., Local time and stochastic area integrals, Ann. Probab., 19, 457-482 (1991) · Zbl 0729.60073
[17] Rogers, L. C.G.; Walsh, J. B., The intrinsic local-time sheet of Brownian motion, Probab. Theory Related Fields, 88, 363-379 (1991) · Zbl 0722.60079
[18] Stroock, D.W., Varadhan, S.R.S, 1979. Multidimensional Diffusion Processes. Springer, New York.; Stroock, D.W., Varadhan, S.R.S, 1979. Multidimensional Diffusion Processes. Springer, New York. · Zbl 0426.60069
[19] Stroock, D.W., Yor, M., 1981. Some remarkable martingales. In: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math., Vol. 850. Springer, Berlin, pp. 590-603.; Stroock, D.W., Yor, M., 1981. Some remarkable martingales. In: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math., Vol. 850. Springer, Berlin, pp. 590-603. · Zbl 0456.60048
[20] Uppman, A., 1982. Sur le flot d’une équation differentielle stochastique. In: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math, Vol. 920. Springer. Berlin, pp. 268-284.; Uppman, A., 1982. Sur le flot d’une équation differentielle stochastique. In: Azéma, J., Yor, M. (Eds.), Séminaire de Probabilités XV, Lect. Notes Math, Vol. 920. Springer. Berlin, pp. 268-284. · Zbl 0503.60070
[21] Warren, J., Yor, M., 1998. The Brownian burglar: conditioning Brownian motion by its local time process. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (Eds.), Sém. Probab. XXXII, Lect. Notes Math., Vol. 1686. Springer, Berlin, pp. 328-342.; Warren, J., Yor, M., 1998. The Brownian burglar: conditioning Brownian motion by its local time process. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (Eds.), Sém. Probab. XXXII, Lect. Notes Math., Vol. 1686. Springer, Berlin, pp. 328-342. · Zbl 0924.60072
[22] Yamada, T.; Ogura, Y., On the strong comparison theorems for solutions of stochastic differential equations, Z. Wahrsch. verw. Gebiete, 56, 3-19 (1981) · Zbl 0468.60056
[23] Yor, M., 1997. Some Aspects of Brownian Motion. Part II (Some Recent Martingale Problems). ETH Zürich, Birkhäuser.; Yor, M., 1997. Some Aspects of Brownian Motion. Part II (Some Recent Martingale Problems). ETH Zürich, Birkhäuser. · Zbl 0880.60082
[24] Zvonkin, A. K., A transformation of the phase space of a process that removes the drift, Math. USSR Sbornik, 2, 129-149 (1974) · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.