×

A new HDG method for Dirichlet boundary control of convection diffusion PDEs. II: Low regularity. (English) Zbl 1396.49025

Summary: In the first part of this work [W. Hu et al., “A new HDG method for Dirichlet boundary control of convection diffusion PDEs. I: High Regularity”, Preprint, arXiv:1801.01461], we analyzed an unconstrained Dirichlet boundary control problem for an elliptic convection diffusion PDE and proposed a new hybridizable discontinuous Galerkin (HDG) method to approximate the solution. For the case of a 2D convex polygonal domain, we also proved an optimal superlinear convergence rate for the control under certain assumptions on the domain and on the target state. In this work, we revisit the convergence analysis without these assumptions; in this case, the solution can have low regularity, and we use a different analysis approach. We again prove an optimal convergence rate for the control and present numerical results to illustrate the convergence theory.

MSC:

49M25 Discrete approximations in optimal control
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
49N60 Regularity of solutions in optimal control
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Apel, M. Mateos, J. Pfefferer, and A. Rösch, On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains, SIAM J. Control Optim., 53 (2015), pp. 3620–3641, . · Zbl 1330.49037
[2] T. Apel, M. Mateos, J. Pfefferer, and A. Rösch, Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes, Math. Control Relat. Fields, 8 (2018), pp. 217–245, . · Zbl 1407.65277
[3] N. Arada and J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations Part I: Problems with no state constraints, Appl. Math. Optim., 45 (2002), pp. 125–143, . · Zbl 1005.49016
[4] R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106 (2007), pp. 349–367, . · Zbl 1133.65037
[5] F. Ben Belgacem, H. El Fekih, and H. Metoui, Singular perturbation for the Dirichlet boundary control of elliptic problems, M2AN Math. Model. Numer. Anal., 37 (2003), pp. 883–850, . · Zbl 1051.49012
[6] M. Braack, Optimal control in fluid mechanics by finite elements with symmetric stabilization, SIAM J. Control Optim., 48 (2009), pp. 672–687, . · Zbl 1186.35134
[7] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1437–1453, . · Zbl 1085.76033
[8] E. Casas, M. Mateos, and J.-P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM Control Optim. Calc. Var., 15 (2009), pp. 782–809, . · Zbl 1175.49027
[9] E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), pp. 1586–1611, . · Zbl 1123.65061
[10] A. Cesmelioglu, B. Cockburn, and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comp., 86 (2017), pp. 1643–1670, . · Zbl 1422.65377
[11] L. Chang, W. Gong, and N. Yan, Weak boundary penalization for Dirichlet boundary control problems governed by elliptic equations, J. Math. Anal. Appl., 453 (2017), pp. 529–557, . · Zbl 1365.65169
[12] H. Chen, W. Qiu, K. Shi, and M. Solano, A superconvergent HDG method for the Maxwell equations, J. Sci. Comput., 70 (2017), pp. 1010–1029, . · Zbl 1372.78022
[13] Y. Chen, B. Cockburn, and B. Dong, Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension, Math. Comp., 85 (2016), pp. 2715–2742, . · Zbl 1344.65070
[14] S. Chowdhury, T. Gudi, and A. K. Nandakumaran, Error bounds for a Dirichlet boundary control problem based on energy spaces, Math. Comp., 86 (2017), pp. 1103–1126, . · Zbl 1359.65098
[15] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365, . · Zbl 1205.65312
[16] B. Cockburn, J. Gopalakrishnan, N. C. Nguyen, J. Peraire, and F.-J. Sayas, Analysis of HDG methods for Stokes flow, Math. Comp., 80 (2011), pp. 723–760, . · Zbl 1410.76164
[17] B. Cockburn and K. Mustapha, A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math., 130 (2015), pp. 293–314, . · Zbl 1329.26013
[18] B. Cockburn and J. Shen, A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian, SIAM J. Sci. Comput., 38 (2016), pp. A545–A566, . · Zbl 1382.65383
[19] K. Deckelnick, A. Günther, and M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains, SIAM J. Control Optim., 48 (2009), pp. 2798–2819, . · Zbl 1203.49043
[20] L. Dede’ and A. Quarteroni, Optimal control and numerical adaptivity for advection-diffusion equations, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 1019–1040, . · Zbl 1075.49014
[21] W. Gong and N. Yan, Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs, SIAM J. Control Optim., 49 (2011), pp. 984–1014, . · Zbl 1228.49034
[22] M. D. Gunzburger, L. Hou, and T. P. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction, SIAM J. Control Optim., 30 (1992), pp. 167–181, . · Zbl 0756.49004
[23] M. D. Gunzburger, L. S. Hou, and T. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Modél. Math. Anal. Numér., 25 (1991), pp. 711–748, . · Zbl 0737.76045
[24] M. Heinkenschloss and D. Leykekhman, Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal., 47 (2010), pp. 4607–4638, . · Zbl 1218.49036
[25] L. S. Hou and S. S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier–Stokes equations, SIAM J. Control Optim., 36 (1998), pp. 1795–1814, . · Zbl 0917.49003
[26] W. Hu, M. Mateos, J. R. Singler, and Y. Zhang, A New HDG Method for Dirichlet Boundary Control of Convection Diffusion PDEs I: High Regularity, preprint, , 2018. · Zbl 1396.49025
[27] W. Hu, J. Shen, J. R. Singler, Y. Zhang, and X. Zheng, A Superconvergent Hybridizable Discontinuous Galerkin Method for Dirichlet Boundary Control of Elliptic PDEs, preprint, , 2017.
[28] B. Li and X. Xie, Analysis of a family of HDG methods for second order elliptic problems, J. Comput. Appl. Math., 307 (2016), pp. 37–51, . · Zbl 1382.65412
[29] B. Li and X. Xie, BPX preconditioner for nonstandard finite element methods for diffusion problems, SIAM J. Numer. Anal., 54 (2016), pp. 1147–1168, . · Zbl 1337.65026
[30] S. May, R. Rannacher, and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM J. Control Optim., 51 (2013), pp. 2585–2611, . · Zbl 1273.65087
[31] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations, J. Comput. Phys., 228 (2009), pp. 3232–3254, . · Zbl 1187.65110
[32] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations, J. Comput. Phys., 228 (2009), pp. 8841–8855, . · Zbl 1177.65150
[33] N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 582–597, . · Zbl 1227.76036
[34] G. Of, T. X. Phan, and O. Steinbach, An energy space finite element approach for elliptic Dirichlet boundary control problems, Numer. Math., 129 (2015), pp. 723–748, . · Zbl 1311.49069
[35] W. Qiu and K. Shi, An HDG method for convection diffusion equation, J. Sci. Comput., 66 (2016), pp. 346–357, . · Zbl 1341.65039
[36] W. Qiu and K. Shi, A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes, IMA J. Numer. Anal., 36 (2016), pp. 1943–1967, . · Zbl 1433.76090
[37] S. S. Ravindran, Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 825–849. · Zbl 1457.65133
[38] M. Stanglmeier, N. C. Nguyen, J. Peraire, and B. Cockburn, An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation, Comput. Methods Appl. Mech. Engrg., 300 (2016), pp. 748–769, . · Zbl 1423.76280
[39] B. Vexler, Finite element approximation of elliptic Dirichlet optimal control problems, Numer. Funct. Anal. Optim., 28 (2007), pp. 957–973, . · Zbl 1148.65051
[40] N. Yan and Z. Zhou, A RT mixed FEM/DG scheme for optimal control governed by convection diffusion equations, J. Sci. Comput., 41 (2009), pp. 273–299, . · Zbl 1203.65191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.