zbMATH — the first resource for mathematics

Solving electromagnetic scattering from complex composite objects with domain decomposition method based on hybrid surface integral equations. (English) Zbl 1403.78036
Summary: A new domain decomposition method (DDM) is proposed to solve the electromagnetic scattering from microstrip antennas and arrays conformally mounted on a perfect electrically conducting (PEC) platform. Based on the local geometrical structures and material properties, the complex composite structures is first decomposed into independent sub-domains, following the philosophy of divide and conquer. The combined field integral equation (CFIE), the electric field integral equation (EFIE), and the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation are then combined seamlessly in the framework of DDM. These equations are applied for different sub-domains: CFIE is used for the platform (closed PEC) sub-domains and EFIE-PMCHWT is employed for the microstrip (composite structure with dielectric substrate and open PEC sheet) sub-domains. To ensure the continuities of fields, the transmission conditions (TCs) are applied on the touching-faces. Compared with the traditional method, the newly developed DDM not only releases the burden of geometry preparation, but also results in a better conditioned matrix.

78M25 Numerical methods in optics (MSC2010)
65R20 Numerical methods for integral equations
45E05 Integral equations with kernels of Cauchy type
78A45 Diffraction, scattering
Full Text: DOI
[1] Munk, B. A., Frequency selective surfaces: theory and design, (2000), John Wiley New York
[2] Jin, J.-M., The finite element method in electromagnetics, (2014), John Wiley & Sons · Zbl 1419.78001
[3] Su, T.; Du, L.; Chen, R., Electromagnetic scattering for multiple PEC bodies of revolution using equivalence principle algorithm, IEEE Trans Antennas Propag, 62, 5, 2736-2744, (2014) · Zbl 1370.78150
[4] Su, T.; Ding, D.; Fan, Z.; Chen, R., Efficient analysis of EM scattering from bodies of revolution via the ACA, IEEE Trans Antennas Propag, 62, 2, 983-985, (2014)
[5] Li, M.; Su, T.; Chen, R., Equivalence principle algorithm with body of revolution equivalence surface for the modeling of large multiscale structures, IEEE Trans Antennas Propag, 64, 5, 1818-1828, (2016)
[6] Wei, S.; Zhixiang, H.; Xianliang, W.; Mingsheng, C., Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation, J Comput Phys, 225, 1, 33-50, (2007) · Zbl 1135.78014
[7] Bao, H.; Chen, R., An efficient domain decomposition parallel scheme for leapfrog ADI-FDTD method, IEEE Trans Antennas Propag, 65, 3, 1490-1494, (2017) · Zbl 1395.78282
[8] Zhang, Z. Q.; Liu, Q. H., Three dimensional weak form conjugate and biconjugate gradient FFT methods for volume integral equations, Microw Opt Technol Lett, 29, 5, 350-356, (2001)
[9] Cheng, G. S.; Hu, Y. L.; Ding, D. Z., Analysis of EM scattering from composite conducting-dielectric objects by time domain non-conformal VSIE, Eng Anal Bound Elem, 79, 75-80, (2017) · Zbl 1403.78006
[10] Ergul, O., Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm, Eng Anal Bound Elem, 36, 3, 423-432, (2012) · Zbl 1245.78015
[11] Yla-Oijala, P.; Taskinen, M.; Sarvas, J., Surface integral equation method for general composite metallic and dielectric structures with junctions, Prog Electromagn Res, 52, 81-108, (2005)
[12] Chu, Y.; Chew, W. C.; Zhao, J., A surface integral equation formulation for low-frequency scattering from a composite object, IEEE Trans Antennas Propag, 51, 10, 2837-2844, (2003)
[13] Gao, H. W.; Peng, Z.; Sheng, X. Q., A geometry-aware domain decomposition preconditioning for hybrid finite element-boundary integral method, IEEE Trans Antennas Propag, 65, 4, 1875-1885, (2017) · Zbl 1395.78272
[14] Lee, S. C.; Vouvakis, M. N.; Lee, J. F., A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays, J Comput Phys, 203, 1, 1-21, (2005) · Zbl 1059.78042
[15] Peng, Z.; Wang, X.; Lee, J. F., Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects, IEEE Trans Antennas Propag, 59, 9, 3328-3338, (2011) · Zbl 1369.78282
[16] Hu, J.; Zhao, R.; Tian, M., Domain decomposition method based on integral equation for solution of scattering from very thin, conducting cavity, IEEE Trans Antennas Propag, 62, 10, 5344-5348, (2014) · Zbl 1371.78326
[17] Zhao, R.; Zhao, H. P.; Nie, Z., Fast integral equation solution of scattering of multiscale objects by domain decomposition method with mixed basis functions, Int J Antennas Propag, 2015, 1-7, (2015)
[18] Andre, B.; Clement, P., Implementation of spectral basis functions in BEM/FEM/GSM domain decomposition methods devoted to scattering and radiation applications, Comput Phys Commun, 178, 6, 438-448, (2008) · Zbl 1196.78016
[19] Collino, F.; Millot, F.; Pernet, S., Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition, Prog Electromagn Res, 80, 1-28, (2008)
[20] Peng, Z.; Lim, K. H.; Lee, J. F., Computations of electromagnetic wave scattering from penetrable composite targets using a surface integral equation method with multiple traces, IEEE Trans Antennas Propag, 61, 1, 256-270, (2013) · Zbl 1370.78141
[21] Zhao, R.; Hu, J.; Zhao, H. P., Solving EM scattering from multiscale coated objects with integral equation domain decomposition method, IEEE Antennas Wirel Propag Lett, 15, 742-745, (2016)
[22] Zhao, W.-J.; Li, L.-W.; Xiao, K., Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation, IEEE Trans Antennas Propag, 58, 7, 2468-2473, (2010)
[23] Zhao, R.; Hu, J.; Zhao, H. P., EFIE-PMCHWT-based domain decomposition method for solving electromagnetic scattering from complex dielectric/metallic composite objects, IEEE Antennas Wirel Propag Lett, 16, 1293-1296, (2017)
[24] Saad, Y., Iterative methods for sparse linear systems, (2003), Society for Industrial and Applied Mathematics · Zbl 1002.65042
[25] Gu, X. M.; Clemens, M.; Huang, T. Z., The scbicg class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems, Comput Phys Commun, 191, 52-64, (2015)
[26] Gu, X. M.; Huang, T. Z.; Carpentieri, B., A hybridized iterative algorithm of the bicorstab and gpbicor methods for solving non-Hermitian linear systems, Comput Math Appl, 70, 12, 3019-3031, (2015)
[27] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 3, 856-869, (1986) · Zbl 0599.65018
[28] Song, J.; C. Lu, C.; Chew, W. C., Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans Antennas Propag, 45, 10, 1488-1493, (1997)
[29] Woo, A. C.; Wang, H. T.G.; Schuh, M. J., EM programmer’s notebook-benchmark radar targets for the validation of computational electromagnetics programs, IEEE Antennas Propag Mag, 35, 1, 84-89, (1993)
[30] Yang, P.; Yan, F.; Yang, F., Microstrip phased-array in-band RCS reduction with a random element rotation technique, IEEE Trans Antennas Propag, 64, 6, 2513-2518, (2016) · Zbl 1395.78302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.