×

zbMATH — the first resource for mathematics

A highly efficient numerical solution for dielectric-coated PEC targets. (English) Zbl 1267.78037
Summary: In this paper, the multi-layer TDS (thin dielectric sheet) integral equation approach is first proposed. This method divides the geometric model into multiple thin layers and assumes the flux density to be constant with respect to the normal direction within each layer. Consequently, the number of unknowns is significantly reduced while the precision of the results could be maintained. Then, the multi-layer TDS integral approach is combined with the PEC (perfect electric conductor) boundary conditions together to handle scattering from dielectric coated PEC objects. This new procedure simplifies the coupled surface (for the conductor)-volume (for dielectric) integral to a surface-surface integral with much fewer unknowns. Furthermore, a remedy approach is also presented in this paper to improve the deteriorated precision for open composed structures due to the significant singular currents near the boundary edges. Compared with traditional PEC-TDS methods, the method presented in this paper can deal with scattering from thick or stratified coatings with arbitrarily lateral or normal inhomogeneity. Its improvement is also capable of handling dielectric coatings on open PEC surfaces. The numerical results at the end show good agreement with the references, showing the accuracy and the validity of these solutions.
MSC:
78A48 Composite media; random media in optics and electromagnetic theory
78A45 Diffraction, scattering
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Harrington R. F., Field Computation by Moment Methods (1968)
[2] Chew W. C., Fast and Efficient Algorithms in Computational Electromagnetics (2001)
[3] DOI: 10.1109/TAP.1982.1142818 · doi:10.1109/TAP.1982.1142818
[4] Donepudi K. C., IEEE Antennas and Propagation Society International Symposium 3 pp 1716– (1999)
[5] DOI: 10.1109/TAP.1984.1143193 · doi:10.1109/TAP.1984.1143193
[6] DOI: 10.1109/8.901277 · doi:10.1109/8.901277
[7] DOI: 10.1109/TAP.2006.879200 · Zbl 1369.78172 · doi:10.1109/TAP.2006.879200
[8] DOI: 10.1109/TAP.2003.809823 · doi:10.1109/TAP.2003.809823
[9] DOI: 10.1109/TAP.2006.875277 · doi:10.1109/TAP.2006.875277
[10] Poggio A. J., Computer Techniques for Electromagnetics (1973)
[11] DOI: 10.1163/156939389X00016 · doi:10.1163/156939389X00016
[12] DOI: 10.1109/8.736628 · doi:10.1109/8.736628
[13] DOI: 10.1002/mop.10500 · doi:10.1002/mop.10500
[14] DOI: 10.1109/TAP.2004.842640 · doi:10.1109/TAP.2004.842640
[15] DOI: 10.1109/74.248480 · doi:10.1109/74.248480
[16] DOI: 10.1109/TAP.1975.1141099 · doi:10.1109/TAP.1975.1141099
[17] Lu, C. 2007. A modified thin dielectric approximation for calculation of EM scattering by dielectric objects with thin material coating. IEEE Antennas and Propagation International Symposium. June9–152007. pp.2809–2812.
[18] DOI: 10.1109/TAP.2006.877180 · doi:10.1109/TAP.2006.877180
[19] DOI: 10.1109/TAP.2006.884233 · doi:10.1109/TAP.2006.884233
[20] Davis, C. P. and Chew, W. C. An alternative to impedance boundary conditions for dielectric-coated PEC surfaces. IEEE Antennas and Propagation Society International Symposium. 9–15 June, pp.2785–2788.
[21] He S., A multi-layer TDS integral equation approach for EM scattering from dielectric objects
[22] Hu, J., Nie, Z. and Lin, L. Solving 3-D electromagnetic scattering from conducting object by MLFMA with curvilinear RWG basis. Antennas, Propagation and EM Theory, Proceedings of the 6th International Symposium. 28 Oct.–1 Nov., pp.460–463.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.