zbMATH — the first resource for mathematics

Gravitational sensing with weak value based optical sensors. (English) Zbl 1423.81025
Summary: Using weak value amplification angular resolution limits, we theoretically investigate the gravitational sensing of objects. By inserting a force-sensing pendulum into a weak value interferometer, the optical response can sense accelerations to a few 10’s of zepto-g \(\text{Hz}^{-1/2}\), with optical powers of 1 mW. We convert this precision into range and mass sensitivity, focusing in detail on simple and torsion pendula. Various noise sources present are discussed, as well as the necessary cooling that should be applied to reach the desired levels of precision.
81P15 Quantum measurement theory, state operations, state preparations
46G10 Vector-valued measures and integration
81V80 Quantum optics
83B05 Observational and experimental questions in relativity and gravitational theory
85A99 Astronomy and astrophysics
Full Text: DOI
[1] Aharonov, Yakir; Albert, David Z.; Vaidman, Lev, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 60, 1351-1354, (1988)
[2] Ritchie, NWM; Story, JG; Hulet, Randall G., Realization of a measurement of a ‘weak value’, Phys. Rev. Lett., 66, 1107-1110, (1991)
[3] Hosten, Onur; Kwiat, Paul, Observation of the spin hall effect of light via weak measurements, Science, 319, 787-790, (2008)
[4] Dixon, P. Ben; Starling, David J.; Jordan, Andrew N.; Howell, John C., Ultrasensitive beam deflection measurement via interferometric weak value amplification, Phys. Rev. Lett., 102, 173601, (2009)
[5] Brunner, Nicolas; Simon, Christoph, Measuring small longitudinal phase shifts: weak measurements or standard interferometry?, Phys. Rev. Lett., 105, 010405, (2010)
[6] Dressel, Justin; Lyons, Kevin; Jordan, Andrew N.; Graham, Trent M.; Kwiat, Paul G., Strengthening weak-value amplification with recycled photons, Phys. Rev. A, 88, 023821, (2013)
[7] Lyons, Kevin; Dressel, Justin; Jordan, Andrew N.; Howell, John C.; Kwiat, Paul G., Power-recycled weak-value-based metrology, Phys. Rev. Lett., 114, 170801, (2015)
[8] Martínez-Rincón, Julián; Mullarkey, Christopher A.; Viza, Gerardo I.; Liu, Wei-Tao; Howell, John C., Ultrasensitive inverse weak-value tilt meter, Opt. Lett., 42, 2479-2482, (2017)
[9] Starling, David J.; Dixon, P. Ben; Jordan, Andrew N.; Howell, John C., Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values, Phys. Rev. A, 80, 041803, (2009)
[10] Feizpour, Amir; Xing, Xingxing; Steinberg, Aephraim M., Amplifying single-photon nonlinearity using weak measurements, Phys. Rev. Lett., 107, 133603, (2011)
[11] Jordan, Andrew N.; Martínez-Rincón, Julián; Howell, John C., Technical advantages for weak-value amplification: when less is more, Phys. Rev. X, 4, 011031, (2014)
[12] Viza, Gerardo I.; Martínez-Rincón, Julián; Alves, Gabriel B.; Jordan, Andrew N.; Howell, John C., Experimentally quantifying the advantages of weak-value-based metrology, Phys. Rev. A, 92, 032127, (2015)
[13] Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N., Protecting weak measurements against systematic errors, Phys. Rev. A, 94, 012329, (2016)
[14] Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N., Weak-value amplification and optimal parameter estimation in the presence of correlated noise, Phys. Rev. A, 96, 052128, (2017)
[15] Lyons, Kevin; Howell, John C.; Jordan, Andrew N., Noise suppression in inverse weak value-based phase detection, Quantum Studies: Mathematics and Foundations, 5, 579-588, (2017)
[16] Jordan, Andrew N.; Tollaksen, Jeff; Troupe, James E.; Dressel, Justin; Aharonov, Yakir, Heisenberg scaling with weak measurement: a quantum state discrimination point of view, Quantum Stud. Math. Found., 2, 5-15, (2015) · Zbl 1317.81013
[17] Steinberg, Aephraim M., Quantum measurement: a light touch, Nature, 463, 890, (2010)
[18] Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I., Time-variable gravity from GRACE: first results, Geophys. Res. Lett., 31, l11501, (2004)
[19] Bingham, R.J., Knudsen, P., Andersen, O.B., Pail, R.: “Using GOCE to estimate the mean North Atlantic circulation,” in AGU Fall Meeting Abstracts (2010)
[20] Bell, RE; Hansen, RO, The rise and fall of early oil field technology; the torsion balance gradiometer, Lead. Edge, 17, 81, (1998)
[21] Leeuwen, Edwin H., BHP develops airborne gravity gradiometer for mineral exploration, Lead. Edge, 19, 1296, (2000)
[22] Diorio, P.; Mahanta, A.; Rose, M.; Lockhart, G., Examples of the application of airborne gravity gradiometry to natural resource exploration, Geophys. Res. Abstr., 5, 03996, (2003)
[23] Anestis, J.; Romaides, JC; Battis, RW; Sands, AZ; Donald, OB; DiFrancesco, Daniel J., A Comparison of gravimetric techniques for measuring subsurface void signals, J. Phys. D Appl. Phys., 34, 433, (2001)
[24] Peters, A.; Chung, KY; Chu, S., High-precision gravity measurements using atom interferometry, Metrologia, 38, 25, (2001)
[25] Luther, Gabriel G.; Towler, William R., Redetermination of the Newtonian gravitational constant \(g\), Phys. Rev. Lett., 48, 121-123, (1982)
[26] Kuroda, Kazuaki, Does the time-of-swing method give a correct value of the Newtonian gravitational constant?, Phys. Rev. Lett., 75, 2796-2798, (1995)
[27] Karagioz, OV, Measurement of the gravitational constant with a torsion balance, Meas. Tech., 39, 979, (1996)
[28] Bagley, Charles H.; Luther, Gabriel G., Preliminary results of a determination of the Newtonian constant of gravitation: a test of the Kuroda Hypothesis, Phys. Rev. Lett., 78, 3047-3050, (1997)
[29] Gundlach, Jens H.; Merkowitz, Stephen M., Measurement of Newton’s constant using a torsion balance with angular acceleration feedback, Phys. Rev. Lett., 85, 2869-2872, (2000)
[30] Quinn, TJ; Speake, CC; Richman, SJ; Davis, RS; Picard, A., A new determination of \({{G}}\) using two methods, Phys. Rev. Lett., 87, 111101, (2001)
[31] Armstrong, TR; Fitzgerald, MP, New measurements of \(g\) using the measurement standards laboratory torsion balance, Phys. Rev. Lett., 91, 201101, (2003)
[32] Kleinevoß, U.; Meyer, H.; Schumacher, A.; Hartmann, S., Absolute measurement of the Newtonian force and a determination of G, Meas. Sci. Technol., 10, 492, (1999)
[33] Parks, Harold V.; Faller, James E., Simple pendulum determination of the gravitational constant, Phys. Rev. Lett., 105, 110801, (2010)
[34] Peters, Achim; Chung, Keng Yeow; Chu, Steven, Measurement of gravitational acceleration by dropping atoms, Nature, 400, 849, (1999)
[35] McGuirk, JM; Foster, GT; Fixler, JB; Snadden, MJ; Kasevich, MA, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A, 65, 033608, (2002)
[36] Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A., Testing general relativity with atom interferometry, Phys. Rev. Lett., 98, 111102, (2007)
[37] Lamporesi, G.; Bertoldi, A.; Cacciapuoti, L.; Prevedelli, M.; Tino, GM, Determination of the Newtonian gravitational constant using atom interferometry, Phys. Rev. Lett., 100, 050801, (2008)
[38] Sorrentino, F.; Lien, YH; Rosi, G.; Cacciapuoti, L.; Prevedelli, M.; Tino, GM, Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant, New J. Phys., 12, 095009, (2010)
[39] Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, GM, Precision measurement of the Newtonian gravitational constant using cold atoms, Nature, 510, 518, (2014)
[40] Goodkind, John M., The superconducting gravimeter, Rev Sci. Instrum., 70, 4131-4152, (1999)
[41] Biedermann, GW; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, MA, Testing gravity with cold-atom interferometers, Phys. Rev. A, 91, 033629, (2015)
[42] Kasevich, Mark, Donnelly, Christine, Overstreet, Chris: Prospects for improved accuracy in the determination of G using atom interferometry. Applied Physics and EE Stanford University, Depts. of Physics (2014)
[43] Turner, Matthew David.: Development of new technologies for precision torsion-balance experiments, Ph.D. thesis (2018)
[44] Ciani, Giacomo; Chilton, Andrew; Apple, Stephen; Olatunde, Taiwo; Aitken, Michael; Mueller, Guido; Conklin, John W., A new torsion pendulum for gravitational reference sensor technology development, Rev Sci. Instrum., 88, 064502, (2017)
[45] Starling, David J.; Dixon, P. Ben; Williams, Nathan S.; Jordan, Andrew N.; Howell, John C., Continuous phase amplification with a Sagnac interferometer, Phys. Rev. A, 82, 011802, (2010)
[46] Knee, George C.; Gauger, Erik M., When amplification with weak values fails to suppress technical noise, Phys. Rev. X, 4, 011032, (2014)
[47] Newton, I.: Philosophiae naturalis principia mathematica (J. Societatis Regiae ac Typis J. Streater, 1687) · Zbl 0050.00201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.