# zbMATH — the first resource for mathematics

Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. (English) Zbl 07007578
Summary: In this paper, a numerical method is applied for solving delay fractional optimal control problems (DFOCPs). The fractional derivative is described in the Caputo sense. Since the fractional derivative of Müntz polynomials can be expressed in terms of the same polynomials, those polynomials can accurately represent properties of fractional calculus. In some situations such as in the frequency response based analysis of control systems containing a time-delay, it is necessary to substitute exponential function with an approximation in the form of a rational function. The most common approximation is the Padé approximation. At the first step, using Padé approximation, the delay problem is transformed to a non-delay problem. Next, using the operational matrix of the fractional derivative of Müntz polynomials and pseudospectral method, fractional optimal control problem (FOCP) is reduced to a nonlinear programming problem. Some numerical examples are given to illustrate the effectiveness of the proposed scheme.

##### MSC:
 65 Numerical analysis 49 Calculus of variations and optimal control; optimization
Full Text:
##### References:
 [1] Ichise, M.; Nagayanagi, Y.; Kojima, T., An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem. Interfacial Electrochem., 33, 253-265, (1971) [2] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1412, (2000) [3] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, (2010), Imperial College Press · Zbl 1210.26004 [4] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Hafez, R. M., A highly accurate Jacobi collocation algorithm for systems of high-order linear differential-difference equations with mixed initial conditions, Math. Methods Appl. Sci., 38, 14, 3022-3032, (2015) · Zbl 1335.65065 [5] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A new jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model., 36, 4931-4943, (2012) · Zbl 1252.34019 [6] Hosseinpour, S.; Nazemi, A., Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method, IMA J. Math. Control Inform., 33, 2, 543-561, (2015) · Zbl 1397.93104 [7] Tohidi, E.; Saberi Nik, H., A Bessel collocation method for solving fractional optimal control problems, Appl. Math. Model., 39, 2, 455-465, (2014) [8] Göllmann, L.; Kern, D.; Maurer, H., Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optim. Control Appl. Methods, 4, 341-365, (2008) [9] Maleki, M.; Hashim, I., Adaptive pseudospectral methods for solving constrained linear and nonlinear time-delay optimal control problems, J. Franklin Inst. B, 351, 2, 811-839, (2014) · Zbl 1293.49086 [10] Marzban, H. R., Optimal control of linear multi-delay systems based on a multi-interval decomposition scheme, Optim. Control Appl. Methods, 37, 1, 190-211, (2016) · Zbl 1336.49036 [11] Safaie, E.; Farahi, M. H.; Farmani Ardehaie, M., An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials, Comput. Appl. Math., 34, 3, 831-846, (2015) · Zbl 1326.49047 [12] Sedaghat, S.; Ordokhani, Y.; Dehghan, M., Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 4815-4830, (2012) · Zbl 1266.65115 [13] Bhrawy, A. H.; Ezz-Eldien, S. S., A new Legendre operational technique for delay fractional optimal control problems, Calcolo, 53, 521-543, (2016) · Zbl 1377.49032 [14] Hosseinpour, S.; Nazemi, A., A collocation method via block-pulse functions for solving delay fractional optimal control problems, IMA J. Math. Control Inform., 1-23, (2016) [15] Borwein, P.; Erdélyi, T.; Zhang, J., Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc., 2, 523-542, (1994) · Zbl 0799.41015 [16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, (2006), North-Holland Mathematics Studies, Elsevier Science [17] G.V. Badalyan, Generalization of Legendre polynomials and some of their applications, Russian, Armenian summary, 9 (1956) 3-22. [18] Borwein, P.; Erdélyi, T.; Zhang, J., Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc., 342, 523-542, (1994) · Zbl 0799.41015 [19] Esmaeili, Sh.; Shamsi, M.; Luchko, Y., Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput. Math. Appl., 62, 918-929, (2011) · Zbl 1228.65132 [20] Jajarmi, A.; Baleanu, D., Suboptimal control of fractional-order dynamic systems with delay argument, J. Vib. Control, 1-17, (2017) [21] Baker, G. A.; Graves-Morris, P. R., Padé Approximants, Vol. 59, (1996), Cambridge University Press [22] Sajja, S.; Corless, M.; Shorten, R., A-stable Padé approximations and quadratic stability, (2013 American Control Conference (ACC), (2013)), 17-19 [23] Turut, V.; Güzel, N., On solving partial differential equations of fractional order by using the variational iteration method and multivariate padé approximations, Eur. J. Pure Appl. Math., 6, 147-171, (2013) · Zbl 1413.65401 [24] Turut, V.; Güzel, N., Multivariate padé approximation for solving nonlinear partial differential equations of fractional order, Abstr. Appl. Anal., (2013) · Zbl 1275.65088 [25] Cuyt, A., How well can the concept of Padé approximant be generalized to the multivariate case?, J. Comput. Appl. Math., 105, 25-50, (1999) · Zbl 0945.41012 [26] Pol, V. B.; Bremmer, H., Operational Calculus Based on the Two-sided Laplace Integral, (1955), Cambridge University Press: Cambridge University Press London · Zbl 0132.08402 [27] Matsuzuka, I.; Nagasawa, K.; Kitahama, A., A proposal for two-sided Laplace transforms and its application to electronic circuits, Appl. Math. Comput., 100, 1-11, (1999) · Zbl 0929.44001 [28] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics, (1988), Springer Verlag: Springer Verlag New York · Zbl 0658.76001 [29] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., An efficient approximate method for solving delay fractional optimal control problems, Nonlinear Dynam., 86, 3, 1649-1661, (2016) · Zbl 1371.34016 [30] Gong, Q.; Ross, I. M.; Kang, W.; Fahroo, F., Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, Comput. Optim. Appl., 41, 307-335, (2008) · Zbl 1165.49034 [31] Ordokhani, Y.; Rahimkhani, P., A numerical technique for solving fractional variational problems by Müntz-Legendre polynomials, J. Appl. Math. Comput., (2017) · Zbl 1400.49034 [32] Palanisamy, K. R.; Rao, G. P., Optimal control of linear systems with delays in state and control via Walsh function, IEE Proc. Control Theory Appl., 130, 300-312, (1983) · Zbl 0526.93028 [33] Dadkhah, M.; Farahi, M. H., Optimal control of time delay systems via hybrid of block-pulse functions and orthonormal taylor series, Int. J. Appl. Comput. Math., 2, 1, 137-152, (2015) [34] Ghomanjani, F.; Farahi, M. H.; Gachpazan, M., Optimal control of time-varying linear delay systems based on the Bezier curves, Comput. Appl. Math., 33, 687-715, (2013) · Zbl 1306.49049 [35] Basin, M.; Rodriguez-Gonzalez, J., Optimal control for linear systems with multiple time delays in control input, IEEE Trans. Automat. Control, 51, 91-97, (2006) · Zbl 1366.93275 [36] Mohan, B. M.; Kar, S. K., Optimal control of multi-delay systems via block-pulse functions, (IEEE International Conference on Industrial and Information Systems, (2010)), 614-619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.