×

Nonlinear fractional optimal control problems with neural network and dynamic optimization schemes. (English) Zbl 1377.93078

Summary: This paper deals with a numerical technique for fractional optimal control problems (FOCPs) based on a neural network scheme. The fractional derivative in these problems is in the Riemann-Liouville sense. The fractional derivative is approximated using the Grunwald-Letnikov definition for numerical computation. According to the Pontryagin’s minimum principle (PMP) for FOCPs and by constructing an error function, we define an unconstrained minimization problem. In the optimization problem, we use trial solutions for the state, costate and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function where weights and biases associated with all neurons are unknown. Substituting the optimal values of the weights and biases in the trial solutions, we obtain the optimal solution of the original problem. Illustrative examples are included to demonstrate the validity and capability of the proposed method.

MSC:

93C10 Nonlinear systems in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrawal, O.M.P.: A general formulation and solution scheme for fractional optimal control problem. Nonlinear Dyn. 38, 323-337 (2004) · Zbl 1121.70019 · doi:10.1007/s11071-004-3764-6
[2] Pooseh, S., Almeida, R., Torres, D.F.M.: A numerical scheme to solve fractional optimal control problems. Conference papers in mathematics, volume, Article ID 165298, p. 10 (2013) · Zbl 1327.93165
[3] Guo, T.L.: The necessary conditions of fractional optimal control in the sense of Caputo. J. Optim. Theory Appl. 156, 115-126 (2013) · Zbl 1263.49018 · doi:10.1007/s10957-012-0233-0
[4] Pooseh, S., Almeida, R., Torres, D.F.M.: Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10, 363-381 (2014) · Zbl 1278.26013 · doi:10.3934/jimo.2014.10.363
[5] Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80, 18111816 (2014)
[6] Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19, 2523-2540 (2012) · Zbl 1358.93097 · doi:10.1177/1077546312458308
[7] Rahimkhani, P., Ordokhani, Y., Babolian, E.: An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn. 86, 16491661 (2016) · Zbl 1371.34016 · doi:10.1007/s11071-016-2983-y
[8] Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. J. Vib. Control 13, 1-7 (2011) · Zbl 1271.65105
[9] Lotfi, A., Yousefi, S.A., Dehghan, M.: Numerical solution of a class of fractional optimal control problems via Legendre orthonormal basis combined with the operational matrix and Gauss quadrature rule. J. Comput. Appl. Math. 250, 143-160 (2013) · Zbl 1286.49030 · doi:10.1016/j.cam.2013.03.003
[10] Hosseinpour, S., Nazemi, A.: Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J. Math. Control Inf. 33, 543-561 (2016) · Zbl 1397.93104 · doi:10.1093/imamci/dnu058
[11] Sabouri, J., Effati, S., Pakdaman, M.: A neural network approach for solving a class of fractional optimal control problems. Neural Process. Lett. 08, 116 (2016)
[12] Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1993) · Zbl 0771.65002 · doi:10.1007/978-1-4757-2272-7
[13] Biswas, R.K., Sen, S.: Fractional optimal control problems with specified final time. ASM J. Comput. Control 14, 1291-1299 (2011) · Zbl 1229.49045
[14] Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83(1-2), 89-108 (2016) · Zbl 1349.93293 · doi:10.1007/s11071-015-2313-9
[15] Zi, B., Ding, H., Cao, J., Zhu, Zh, Kecskeméthy, A.: Integrated mechanism design and control for completely restrained hybrid-driven based cable parallel manipulators. J. Intell. Robot. Syst. 74(3-4), 643-661 (2014) · doi:10.1007/s10846-013-9848-0
[16] Haykin, S.: Neural Networks : A Comprehensive Foundation, 3rd edn. Prentice-Hall, Upper Saddle River (2007) · Zbl 0828.68103
[17] Graupe, D.: Principles of Artificial Neural Networks, 2nd edn. World Scientific, Singapore (2007) · Zbl 1139.68399 · doi:10.1142/6429
[18] Tang, H., Tan, K.C., Yi, Z.: Neural Networks: Computational Models and Applications. Springer, Berlin (2007) · Zbl 1138.68497 · doi:10.1007/978-3-540-69226-3
[19] Muller, B., Reinhardt, J., Strickland, M.T.: Neural Networks: An Introduction, 2nd edn. Springer, Berlin (2002) · Zbl 0831.68083
[20] Picton, P.: Neural Networks, 2nd edn. Palgrave, Basingstoke (2000)
[21] Fine, T.L.: Feed Forward Neural Network Methodology. Springer, New York (1999) · Zbl 0963.68163
[22] Schalkoff, R.J.: Artificial Neural Networks. McGraw-Hill, New York (1997) · Zbl 0910.68165
[23] Ellacott, S.W.: Mathematics of Neural Networks: Models, Algorithms and Applications. Kluwer Academic Publishers, Boston (1997) · doi:10.1007/978-1-4615-6099-9
[24] Khanna, T.: Foundations of Neural Networks. Addison-Wesley, Reading (1990) · Zbl 0752.92003
[25] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987-1000 (1998) · doi:10.1109/72.712178
[26] Malek, A., Shekari Beidokhti, R.: Numerical solution for high order differential equations using a hybrid neural network optimization method. Appl. Math. Comput. 183, 260-271 (2006) · Zbl 1105.65340
[27] Shekari Beidokhti, R., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Frankl. Inst. 346, 898-913 (2009) · Zbl 1298.65155 · doi:10.1016/j.jfranklin.2009.05.003
[28] Tsoulos, I.G., Gavrilis, D., Glavas, E.: Solving differential equations with constructed neural networks. Neurocomputing 72, 2385-2391 (2009) · doi:10.1016/j.neucom.2008.12.004
[29] Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput. Math. Appl. 62, 3796-3811 (2011) · Zbl 1236.65107 · doi:10.1016/j.camwa.2011.09.028
[30] Dua, V.: An artificial neural network approximation based decomposition approach for parameter estimation of system of ordinary differential equations. Comput. Chem. Eng. 35, 545-553 (2011) · doi:10.1016/j.compchemeng.2010.06.005
[31] Shirvany, Y., Hayati, M., Moradian, R.: Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks. Commun. Nonlinear Sci. Numer. Simul. 13, 2132-2145 (2008) · Zbl 1221.65315 · doi:10.1016/j.cnsns.2007.04.024
[32] Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9, 20-29 (2009) · doi:10.1016/j.asoc.2008.02.003
[33] Balasubramaniam, P., Kumaresan, N.: Solution of generalized matrix Riccati differential equation for indefinite stochastic linear quadratic singular system using neural networks. Appl. Math. Comput. 204, 671-679 (2008) · Zbl 1157.65397
[34] Becerikli, Y., Konarm, A.F., Samad, T.: Intelligent optimal control with dynamic neural networks. Neural Netw. 16, 251-259 (2003) · doi:10.1016/S0893-6080(02)00232-0
[35] Vrabie, D., Lewis, F.: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw. 22, 237-246 (2009) · Zbl 1335.93068 · doi:10.1016/j.neunet.2009.03.008
[36] Vrabie, D., Lewis, F., Levine, D.: Neural network-based adaptive optimal controller a continuous-time formulation. Commun. Comput. Inf. Sci. 15, 276-285 (2008) · Zbl 1155.49033
[37] Cheng, T., Lewis, F.L., Abu-Khalaf, M.: Fixed-final-time-constrained optimal control of nonlinear systems using neural network HJB approach. IEEE Trans. Neural Netw. 18, 1725-1737 (2007) · doi:10.1109/TNN.2007.905848
[38] Effati, S., Pakdaman, M.: Optimal control problem via neural networks. Neural Comput. Appl. 23, 2093-2100 (2013) · doi:10.1007/s00521-012-1156-2
[39] Nazemi, A.R.: A dynamical model for solving degenerate quadratic minimax problems with constraints. J. Comput. Appl. Math. 236, 1282-1295 (2011) · Zbl 1229.90262 · doi:10.1016/j.cam.2011.08.012
[40] Nazemi, A.R.: A dynamic system model for solving convex nonlinear optimization problems. Commun. Nonlinear Sci. Numer. Simul. 17, 1696-1705 (2012) · Zbl 1250.90067 · doi:10.1016/j.cnsns.2011.08.035
[41] Nazemi, A.R.: Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng. Appl. Artif. Intell. 26, 685-696 (2013) · doi:10.1016/j.engappai.2012.09.011
[42] Nazemi, A.R., Omidi, F.: A capable neural network model for solving the maximum flow problem. J. Comput. Appl. Math. 236, 3498-3513 (2012) · Zbl 1239.90015 · doi:10.1016/j.cam.2012.03.001
[43] Nazemi, A.R.: A neural network model for solving convex quadratic programming problems with some applications. Eng. Appl. Artif. Intell. 32, 54-62 (2014) · doi:10.1016/j.engappai.2014.02.014
[44] Nazemi, A.R., Omidi, F.: An efficient dynamic model for solving the shortest path problem. Transp. Res. Part C Emerg. Technol. 26, 1-19 (2013) · doi:10.1016/j.trc.2012.07.005
[45] Nazemi, A.R., Sharifi, E.: Solving a class of geometric programming problems by an efficient dynamic model. Commun. Nonlinear Sci. Numer. Simul. 18, 692-709 (2013) · Zbl 1311.90143 · doi:10.1016/j.cnsns.2012.07.016
[46] Nazemi, A.R., Effati, S.: An application of a merit function for solving convex programming problems. Comput. Ind. Eng. 66, 212-221 (2013) · doi:10.1016/j.cie.2013.07.017
[47] Nazemi, A.R., Nazemi, M.: A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn. Comput. 6, 484-495 (2014) · doi:10.1007/s12559-014-9249-0
[48] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[49] Oldham, K.B., Spanier, J.: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974) · Zbl 0292.26011
[50] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303-314 (1989) · Zbl 0679.94019 · doi:10.1007/BF02551274
[51] Funahashi, K.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2, 183-192 (1989) · doi:10.1016/0893-6080(89)90003-8
[52] Hornik, K., Stinchombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359-366 (1989) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[53] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming—Theory and Algorithms, 3rd edn. Wiley, Hoboken (2006) · Zbl 1140.90040 · doi:10.1002/0471787779
[54] Zhang, X.-S.: Neural Networks in Optimization. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 1017.90109 · doi:10.1007/978-1-4757-3167-5
[55] Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006) · Zbl 1104.65059
[56] Lee, K. Y., El-Sharkawi, M. A.: Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. IEEE Press Series on Power Engineering (2008) · Zbl 1121.70019
[57] Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982) · Zbl 0552.34001
[58] Sun, J., Chen, J.-S., Ko, C.-H.: Neural networks for solving second-order cone constrained variational inequality problem. Comput. Optim. Appl. 51, 623-648 (2012) · Zbl 1268.90107 · doi:10.1007/s10589-010-9359-x
[59] Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969) · Zbl 0186.40901
[60] Saberi Nik, H., Effati, S., Yildirim, A.: Solution of linear optimal control systems by differential transform method. Neural Comput. Appl. 23, 1311-1317 (2013) · Zbl 1287.65124 · doi:10.1007/s00521-012-1073-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.