×

The “battle of the sexes”: A genetic model with limit cycle behavior. (English) Zbl 0671.92010

A modification of Dawkins’ “battle of the sexes” which is the simplest evolutionary game without an evolutionarily stable strategy is studied. The model investigated by the authors is a simple genetic model with two alleles at each of two loci, with sex-dependence and fitnesses depending on the frequencies of the other sex. For small intensity of frequency dependent selection the existence of a stable limit cycle is proved.
Reviewer: H.Länger

MSC:

92D15 Problems related to evolution
92D10 Genetics and epigenetics
91A40 Other game-theoretic models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akin, E., The Geometry of Population Genetics, (Lecture Notes in Biomathematics, Vol. 31 (1979), Springer: Springer Berlin) · Zbl 0437.92016
[2] Akin, E., Cycling in simple genetic systems, J. Math. Biol, 13, 305-324 (1982) · Zbl 0484.92009
[3] Akin, E., Hopf bifurcation in the two locus genetic models, “Memo. Amer. Math. Soc.,” No. 284 (1983), Providence, R.I. · Zbl 0525.34025
[4] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, (Grundlehren Math. Wissenschaften, Vol. 250 (1983), Springer: Springer Berlin) · Zbl 0507.34003
[5] Bomze, I.; Schuster, P.; Sigmund, K., The role of Mendelian genetics in strategic models on animal behavior, J. Theor. Biol, 101, 19-38 (1983)
[6] Cressman, R.; Hines, W. G.S., Evolutionarily stable strategies of diploid populations with semi-dominant inheritance patterns, J. Appl. Prob, 21, 1-9 (1984) · Zbl 0556.92015
[7] Dawkins, R., The Selfish Gene (1976), Oxford Univ. Press: Oxford Univ. Press Oxford
[8] Eshel, I., Evolutionarily stable strategies and viability selection in Mendelian populations, Theor. Pop. Biol, 25, 204-217 (1982) · Zbl 0504.92021
[9] Eshel, I.; Akin, E., Coevolutionary instability of mixed Nash solutions, J. Math. Biol, 18, 123-133 (1983) · Zbl 0531.92024
[10] Groebner, W.; Hofreiter, N., Integraltafel, 2. Teil: Bestimmte Integrale (1950), Springer: Springer Berlin · Zbl 0126.33107
[11] Hastings, A., Stable cycling in discrete-time genetic models, (Proc. Natl. Acad. U.S.A, 11 (1981)), 7224-7225 · Zbl 0466.92010
[12] Hines, W. G.S.; Bishop, D. T., Can and will a sexual diploid population attain an evolutionary stable strategy?, J. Theor. Biol, 111, 667-686 (1984) · Zbl 0537.92013
[13] Hofbauer, J., Gradients versus cycling in genetic selection models, (Aubin, J.-P.; Saari, D.; Sigmund, K., Dynamics of Macrosystems, Proc. Laxenburg. Dynamics of Macrosystems, Proc. Laxenburg, 1984. Dynamics of Macrosystems, Proc. Laxenburg. Dynamics of Macrosystems, Proc. Laxenburg, 1984, Lecture Notes in Economics and Mathematical Systems, Vol. 257 (1984), Springer: Springer Berlin), 90-101 · Zbl 0575.92013
[14] Hofbauer, J., The selection mutation equation, J. Math. Biol, 23, 41-53 (1985) · Zbl 0582.92017
[15] Hofbauer, J., Are there mixed ESS in asymmetric games? (1987), To appear
[16] Hofbauer, J.; Iooss, G., A Hopf bifurcation theorem for difference equations approximating a differential equation, Monatsh. Math, 98, 99-113 (1984) · Zbl 0542.58018
[17] Hofbauer, J.; Sigmund, K., Evolutionstheorie und dynamische Systeme. Mathematische Aspekte der Selektion (1984), Parey: Parey Hamburg/Berlin · Zbl 0578.92015
[18] Hunt, F., Regulation of population cycles by genetic feedback: Existence of periodic solutions of a mathematical model, J. Math. Biol, 13, 271-282 (1982) · Zbl 0469.92006
[19] Hutson, V.; Moran, W., Persistence of species obeying difference equations, J. Math. Biol, 15, 203-213 (1982) · Zbl 0495.92015
[20] Iooss, G., Bifurcations of Maps and Applications, (North-Holland Math. Studies, Vol. 36 (1979), North-Holland: North-Holland Amsterdam) · Zbl 0408.58019
[21] Koth, M.; Kemler, F., A one locus-two allele selection model admitting stable limit cycles, J. Theor. Biol, 122, 263-267 (1986)
[22] Lessard, S., Evolutionary dynamics in frequency-dependent two-phenotype models, Theor. Pop. Biol, 25, 210-234 (1984) · Zbl 0552.92011
[23] Maynard Smith, J., Will a sexual population evolve to an ESS?, Amer. Nat, 177, 1015-1018 (1981)
[24] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0526.90102
[25] Schuster, P.; Sigmund, K., Coyness, philandering and stable strategies, Animal Behav, 29, 186-192 (1981)
[26] Selgrade, J. F.; Namkoong, G., Dynamical behavior of differential equation models of frequency and density dependent populations, J. Math. Biol, 19, 133-146 (1984) · Zbl 0537.92012
[27] Selten, R., A note on evolutionarily stable strategies in asymmetrical animal conflicts, J. Theor. Biol, 84, 93-101 (1980)
[28] Thomas, B., Genetical ESS-models II. Multistrategy models and multiple alleles, Theor. Pop. Biol, 28, 33-49 (1985) · Zbl 0612.92010
[29] Zeeman, E. C., Population dynamics from game theory, (Global Theory of Dynamical Systems. Global Theory of Dynamical Systems, Lecture Notes in Mathematics, Vol. 819 (1980), Springer: Springer Berlin) · Zbl 0448.92015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.