×

Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: stability analysis and convergence behaviour of a point and a plane solver. (English) Zbl 1177.76284

Summary: Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed.
The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP).
The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations.
The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution.
The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated.
Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrawal, K.; Loezos, P. N.; Syamlal, M.; Sundaresan, S., The role of meso-scale structures in rapid gas-solid flows, J. Fluid Mech., 445, 151-185 (2001) · Zbl 1156.76450
[2] Anderson, T.; Jackson, R., A fluid mechanical description of fluidized beds, Ind. Eng. Chem. Fundam., 6, 527 (1967)
[3] J. De Wilde, Adsorption of \(SO_2_x\); J. De Wilde, Adsorption of \(SO_2_x\)
[4] De Wilde, J.; Heynderickx, G. J.; Vierendeels, J.; Dick, E.; Marin, G. B., An extension of the preconditioned advection upstream splitting method for 3D two-phase flow calculations in circulating fluidized beds, Comp. Chem. Eng., 26, 12, 1677-1702 (2002)
[5] De Wilde, J.; Marin, G. B.; Heynderickx, G. J., The effects of abrupt T-outlets in a riser: 3D simulation using the kinetic theory of granular flow, Chem. Eng. Sci., 58, 3-6, 877-885 (2003)
[6] J. De Wilde, G.J. Heynderickx, G.B. Marin, A gradient instead of a source term approach for gas-solid Interactions in Eulerian-Eulerian gas-solid flow models. In: Proceedings of the 5th International Conference on Multiphase Flow (ICMF-2004), Yokohama, Japan, May 30-June 3, 2004; J. De Wilde, G.J. Heynderickx, G.B. Marin, A gradient instead of a source term approach for gas-solid Interactions in Eulerian-Eulerian gas-solid flow models. In: Proceedings of the 5th International Conference on Multiphase Flow (ICMF-2004), Yokohama, Japan, May 30-June 3, 2004
[7] Dick, E.; Steelant, J., Coupled solution of the steady compressible Navier-Stokes equations and the \(k\)-epsilon turbulence equations with a multigrid method, Appl. Numer. Math., 23, 1, 49-61 (1997) · Zbl 0869.76053
[8] Ding, J.; Gidaspow, D., A bubbling fluidization model using kinetic-theory of granular flow, AIChE J., 36, 4, 523-538 (1990)
[9] Evje, S.; Flatten, T., Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192, 1, 175-210 (2003) · Zbl 1032.76696
[10] Evje, S.; Fjelde, K. K., On a rough AUSM scheme for a one-dimensional two-phase model, Comput. Fluids, 32, 10, 1497-1530 (2003) · Zbl 1128.76337
[11] Fox, R. O., Computational methods for turbulent reacting flows in the chemical process industry, Rev. I. Fr. Petrol., 51, 2, 215-243 (1996)
[12] Gidaspow, D., Multiphase flow and fluidization: continuum and kinetic theory descriptions (1994), Academic Press: Academic Press London · Zbl 0789.76001
[13] Gregor, W.; Rumpf, H., Velocity of sound in two-phase media, Int. J. Multiphase Flow, 1, 6, 753-769 (1975)
[14] Harlow, F. H.; Amsden, A. A., Numerical-calculation of multiphase fluid-flow, J. Comput. Phys., 17, 1, 19-52 (1975) · Zbl 0297.76079
[15] Hinze, J., Turbulence: an introduction to its mechanism and theory (1959), McGraw-Hill: McGraw-Hill New York
[16] Kuipers, J. A.M.; Vanduin, K. J.; Vanbeckum, F. P.H.; Vanswaaij, W. P.M., A numerical-model of gas-fluidized beds, Chem. Eng. Sci., 47, 8, 1913-1924 (1992)
[17] Liou, M.-S.; Steffen, C. J., A new flux splitting scheme, J. Comput. Phys., 107, 1, 23-39 (1993) · Zbl 0779.76056
[18] M.-S. Liou, J.R. Edwards, AUSM schemes and extensions for low-Mach and multiphase flows, in: Proceedings of the 30th Computational Fluid Dynamics, Von Karman Institute for Fluid Dynamics Lecture Series 1999-2003, 1999; M.-S. Liou, J.R. Edwards, AUSM schemes and extensions for low-Mach and multiphase flows, in: Proceedings of the 30th Computational Fluid Dynamics, Von Karman Institute for Fluid Dynamics Lecture Series 1999-2003, 1999
[19] Mao, D. M.; Edwards, J. R.; Kuznetsov, A. V.; Srivastava, R. K., Development of low-diffusion flux-splitting methods for dense gas-solid flows, J. Comput. Phys., 185, 1, 100-119 (2003) · Zbl 1047.76551
[20] Nieuwland, J. J.; Annaland, M. V.; Kuipers, J. A.M.; vanSwaaij, W. P.M., Hydrodynamic modeling of gas/particle flows in riser reactors, AIChE J., 42, 6, 1569-1582 (1996)
[21] Paillère, H.; Corre, C.; Cascales, J. R.G., On the extension of the AUSM plus scheme to compressible two-fluid models, Comput. Fluids, 32, 6, 891-916 (2003) · Zbl 1040.76044
[22] Patankar, S. V.; Spalding, D. B., Calculation procedure for heat, mass and momentum-transfer in 3-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15, 10, 1787 (1972) · Zbl 0246.76080
[23] W.C. Rivard, M.D. Torrey, K-Fix: A Computer Program for Transient, Two-dimensional, Two-fluid Flow, Los Alamos, La-Nureg-6623, 1977; W.C. Rivard, M.D. Torrey, K-Fix: A Computer Program for Transient, Two-dimensional, Two-fluid Flow, Los Alamos, La-Nureg-6623, 1977
[24] W.C. Rivard, M.D. Torrey, Threed: An Extension of the K-Fix Code for Three Dimensions, Los Alamos, La-Nureg-6623, 1979; W.C. Rivard, M.D. Torrey, Threed: An Extension of the K-Fix Code for Three Dimensions, Los Alamos, La-Nureg-6623, 1979
[25] Samuelsberg, A.; Hjertager, B. H., Computational modeling of gas/particle flow in a riser, AIChE J., 42, 6, 1536-1546 (1996) · Zbl 1135.76539
[26] Schlichting, H., Boundary-Layer Theory (1979), McGraw-Hill: McGraw-Hill New York
[27] Sinclair, J. L.; Jackson, R., Gas-particle flow in a vertical pipe with particle-particle interactions, AIChE J., 35, 9, 1473-1486 (1989)
[28] Stewart, H. B.; Wendroff, B., 2-Phase flow - models and methods, J. Comput. Phys., 56, 3, 363-409 (1984) · Zbl 0596.76103
[29] Turkel, E., Preconditioned methods for solving the incompressible and low-speed compressible equations, J. Comput. Phys., 72, 2, 277-298 (1987) · Zbl 0633.76069
[30] van der Schaaf, J.; Schouten, J. C.; van den Bleek, C. M., Origin, propagation and attenuation of pressure waves in gas-solid fluidized beds, Powder Technol., 95, 3, 220-233 (1998)
[31] G. Van engelandt, J. De Wilde, G.J. Heynderickx, G.B. Marin, Experimental study on the inlet phenomena of a 35° inclined non-aerated and aerated Y-inlet in a dilute cold-flow riser, Int. J. Multiphase Flow (submitted); G. Van engelandt, J. De Wilde, G.J. Heynderickx, G.B. Marin, Experimental study on the inlet phenomena of a 35° inclined non-aerated and aerated Y-inlet in a dilute cold-flow riser, Int. J. Multiphase Flow (submitted)
[32] Vierendeels, J.; Riemslagh, K.; Dick, E., A multigrid semi-implicit line-method for viscous incompressible and low-Mach-number flows on high aspect ratio grids, J. Comput. Phys., 154, 2, 310-341 (1999) · Zbl 0955.76067
[33] Vierendeels, J.; Merci, B.; Dick, E., Blended AUSM plus method for all speeds and all grid aspect ratios, AIAA J., 39, 12, 2278-2282 (2001)
[34] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 11, 2050-2057 (1995) · Zbl 0849.76072
[35] Zhang, D. Z.; VanderHeyden, W. B., The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, Int. J. Multiphase Flow, 28, 5, 805-822 (2002) · Zbl 1136.76693
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.