zbMATH — the first resource for mathematics

Finite element modeling of finite deformable, biphasic biological tissues with transversely isotropic statistically distributed fibers: toward a practical solution. (English) Zbl 1338.74015
Summary: The distribution of collagen fibers across articular cartilage layers is statistical in nature. Based on the concepts proposed in previous models, we developed a methodology to include the statistically distributed fibers across the cartilage thickness in the commercial FE software COMSOL which avoids extensive routine programming. The model includes many properties that are observed in real cartilage: finite hyperelastic deformation, depth-dependent collagen fiber concentration, depth- and deformation-dependent permeability, and statistically distributed collagen fiber orientation distribution across the cartilage thickness. Numerical tests were performed using confined and unconfined compressions. The model predictions on the depth-dependent strain distributions across the cartilage layer are consistent with the experimental data in the literature.

74B20 Nonlinear elasticity
74D10 Nonlinear constitutive equations for materials with memory
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74Q15 Effective constitutive equations in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Wilson, W.; Donkelaar, C.C.; Rietbergen, R.; Huiskes, R., The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage, Med. Eng. Phys., 27, 810-826, (2005)
[2] Taylor, Z.A.; Miller, K., Constitutive modeling of cartilaginous tissues: a review, J. Appl. Biomech., 22, 212-229, (2006)
[3] Aspden, R.; Hukins, D., Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function, Proc. R. Soc. Lond. Ser. B., 212, 299-304, (1981)
[4] Minns, R.; Steven, F., The collagen fibril organization in human articular cartilage, J. Anat., 123, 437-457, (1977)
[5] Hedlund, H.; Mengarelli-Widholm, S.; Reinholt, F.; Svensson, O., Stereological studies on collagen in bovine articular cartilage, Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS), 101, 133-140, (1993)
[6] Langsjo, T.; Hyttinen, M.; Pelttari, A.; Kiraly, K.; Arokoski, J.; Helminen, H., Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling, J. Anat., 195, 281-293, (1999)
[7] Pins, G.; Huang, E.; Christiansen, D.; Silver, F., Effects of static axial strain on the tensile properties and failure mechanisms of self-assembled collagen fibers, J. Appl. Polym. Sci., 63, 1429-1440, (1997)
[8] Li, L.P.; Herzog, W.; Korhonen, R.K.; Jurvelin, J.S., The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression, Med. Eng. Phys., 27, 51-57, (2005)
[9] Li, L.P.; Cheung, J.T.; Herzog, W., Three-dimensional fibril-reinforced finite element model of articular cartilage, Med. Biol. Eng. Comput., 47, 607-615, (2009)
[10] Wilson, W.; Donkelaar, C.C.; Rietbergen, B.; Huiskes, R., A fibril-reinforced poroviscoelastic swelling model for articular cartilage, J. Biomech., 38, 1195-1204, (2005)
[11] Wilson, W.; Huyghe, J.M.; Donkelaar, C.C., Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition, Biomech. Model Mechanobiol., 6, 43-53, (2007)
[12] Walpole, L., Elastic behavior of composite materials: theoretical foundations, Adv. Appl. Mech., 21, 169-242, (1981) · Zbl 0512.73056
[13] Qiu, Y.; Weng, G., On the application of Mori-tanaka’s theory involving transversely isotropic spheroidal inclusions, Int. J. Eng. Sci., 28, 1121-1137, (1990) · Zbl 0719.73005
[14] Federico, S.; Grillo, A.; Herzog, W., A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties, J. Mech. Phys. Solids, 52, 2309-2327, (2004) · Zbl 1115.74358
[15] Wu, J.Z.; Herzog, W.; Epstein, M., Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading, J. Biomech., 32, 563-572, (1999)
[16] Wu, J.Z.; Herzog, W., Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes, J. Biomech., 35, 931-942, (2002)
[17] Federico, S.; Grillo, A.; La Rosa, G.; Giaquinta, G.; Herzog, W., A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage, J. Biomech., 38, 2008-2018, (2005)
[18] Federico, S.; Herzog, W., Towards an analytical model of soft biological tissues, J. Biomech., 41, 3309-3313, (2008)
[19] Federico, S.; Gasser, T., Nonlinear elasticity of biological tissues with statistical fiber orientation, J. R. Soc. Interface., 7, 955-966, (2010)
[20] Federico, S.; Grillo, A., Elasticity and permeability of porous fiber-reinforced materials under large deformations, Mech. Mater., 44, 58-71, (2012)
[21] Taylor, Z.A.; Kirk, T.B.; Miller, K., Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens, Comput. Methods Biomech. Biomed. Eng., 10, 327-336, (2007)
[22] Taylor, Z.A.; Kirk, T.B.; Miller, K., Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - I: development of a microstructural model, Comput. Methods Biomech. Biomed. Eng., 10, 307-316, (2007)
[23] Lanir, Y., Constitutive equations for fibrous connective tissues, J Biomech, 16, 1-12, (1983)
[24] Billiar, K.L.; Sacks, M.S., Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II—A structural constitutive model, J. Biomech. Eng., 122, 327-335, (2000)
[25] Freed, A.D.; Einstein, D.R.; Vesely, I., Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay, Biomech. Model Mechanobiol., 4, 100-117, (2005)
[26] Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A., Hyperelastic modelling of arterial layers with distributed collagen fiber orientations, J. R. Soc. Interface., 3, 15-35, (2006)
[27] Seifzadeh, A.; Wang, J.; Oguamanam, D.C.; Papini, M., A nonlinear biphasic fiber-reinforced porohyperviscoelastic model of articular cartilage incorporating fiber reorientation and dispersion, J. Biomech. Eng., 133, 081004, (2011)
[28] Mollenhauer, J.; Aurich, M.; Muehleman, C.; Khelashvilli, G.; Irving, T.C., X-ray diffraction of the molecular substructure of human articular cartilage, Connect. Tissue Res., 44, 201-207, (2003)
[29] Pajerski, J.: Nonlinear Biphasic Microstructural Numerical Analysis of Articular Cartilage and Chondrocytes, M.Sc. Thesis, The University of Calgary, Canada (2010)
[30] Tomic, A.; Grillo, A.; Federico, S., Poroelastic materials reinforced by statistically oriented fibers - numerical implementation and application to articular cartilage, IMA J. Appl. Math., 79, 1027-1059, (2014) · Zbl 1299.74171
[31] Federico, S.; Herzog, W., On the anisotropy and inhomogeneity of permeability in articular cartilage, Biomech. Model Mechanobiol., 7, 367-378, (2008)
[32] Federico, S.; Herzog, W., On the permeability of fiber-reinforced porous medis, Int. J. Solids Struct., 45, 2160-2172, (2008) · Zbl 1151.74016
[33] Pierce, D.M.; Ricken, T.; Holzapfel, G.A., A hyperelastic biphasic fiber-reinforced model of articular cartilage considering distributed collagen fiber orientations: continuum basis, computational aspects and applications, Comput. Methods Biomech. Biomed. Eng., 16, 1344-1361, (2013)
[34] Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G., Biphasic creep and stress relaxation of articular cartilage: theory and experiment, ASME J. Biomech. Eng., 102, 73-84, (1980)
[35] Federico, S., Volumetric-distortional decomposition of deformation and elasticity tensor, Math. Mech. Solids, 15, 672-690, (2010) · Zbl 1257.74018
[36] Athanasiou K., Darling E., Hu J., Reddi A.: Articular Cartilage. CRC Press, Boca Raton (2013)
[37] Federico, S.; Grillo, A.; Giaquinta, G.; Herzog, W., A semi-analytical solution for the confined compression of hydrated soft tissue, Meccanica, 44, 197-205, (2009) · Zbl 1254.74084
[38] Maroudas, A.; Bullough, P., Permeability of articular cartilage, Nature, 219, 1260-1261, (1968)
[39] Schinagl, R.M.; Gurskis, D.; Chen, A.C.; Sah, R.L., Depth-dependent confined compression modulus of full-thickness bovine articular cartilage, J. Orthop. Res., 15, 499-506, (1997)
[40] Holmes, M.; Mow, V., Nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration, J. Biomech., 23, 1145-1156, (1990)
[41] Neu, C.P.; Hull, M.L.; Walton, J.H., Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants, J. Orthop. Res., 23, 1390-1398, (2005)
[42] McCredie, A.J.; Stride, E.; Saffari, N., Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2009, 4262-4265, (2009)
[43] Silverberg, J.L.; Dillavou, S.; Bonassar, L.; Cohen, I., Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage, J. Orthop. Res., 31, 686-691, (2013)
[44] Sultana, N.; Wang, M., PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation, Biofabrication, 4, 015003, (2012)
[45] Schinagl, R.M.; Ting, M.K.; Price, J.H.; Sah, R.L., Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression, Ann. Biomed. Eng., 24, 500-512, (1996)
[46] Quinn, T.M.; Dierickx, P.; Grodzinsky, A.J., Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression, J. Biomech., 34, 1483-1490, (2001)
[47] Reynaud, B.; Quinn, T.M., Anisotropic hydraulic permeability in compressed articular cartilage, J. Biomech., 39, 131-137, (2006)
[48] Placidi, L.; dell’Isola, F.; Ianiro, N.; Sciarra, G., Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena, Eur. J. mech. A/Solids., 27, 582-606, (2008) · Zbl 1146.74012
[49] dell’Isola, F.; Madeo, A.; Seppecher, P., Boundary conditions at fluid-permeable interfaces in porous media: A variational approach, Int. J. Solids Struct., 46, 3150-3164, (2009) · Zbl 1167.74393
[50] Scerrato, D; Giorgio, I; Della Corte, A; Madeo, A; Limam, A, A micro-structural model for dissipation phenomena in the concrete, Int. J. Numer. Anal. Method Geomech., 39, 2037-2052, (2015)
[51] Eremeyev, V.A.; Pietraszkiewicz, W., Material symmetry group of the non-linear polar-elastic continuum, Int. J. Solids Struct., 49, 1993-2005, (2012)
[52] Yang, Y.; Misra, A., Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation, Comput. Model Eng. Sci., 64, 1-36, (2006) · Zbl 1231.74023
[53] Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014) doi:10.1177/1081286514531265
[54] Cuomo, M.; Contrafatto, L.; Greco, L., A variational model based on isogeometric interpolation for the analysis of cracked bodies, Int. J. Eng. Sci., 80, 173-188, (2014) · Zbl 1423.74055
[55] Dell’Isola, F.; Steigmann, D.J., A two-dimensional gradient-elasticity theory for woven fabrics, J. Elast., 118, 113-125, (2015) · Zbl 1305.74024
[56] Steigmann, D.J.; Dell’Isola, F., Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech. Sin., 31, 373-382, (2015) · Zbl 1346.74128
[57] Giorgio, I; Grygoruk, R; dell’Isola, F; Steigmann, DJ, Pattern formation in the three-dimensional deformations of fibered sheets, Mech. Res. Commun., 69, 164-171, (2015)
[58] Grillo, A.; Federico, S.; Wittum, G.; Imatani, S.; Giaquinta, G.; Mićunović, M.V., Evolution of a fibre-reinforced growing mixture, Nuovo Cimento C, 32, 97-119, (2009)
[59] Grillo, A.; Federico, S.; Wittum, G., Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Lin Mech., 47, 388-401, (2012)
[60] Grillo, A; Prohl, R; Wittum, G, A poroplastic model of structural reorganisation in porous media of biomechanical interest, Contin. Mech. Thermodyn., 28, 579-601, (2016) · Zbl 1348.74097
[61] Grillo, A., Prohl, R., Wittum, G.: A generalised algorithm for anelastic processes in elastoplasticity and biomechanics. Math. Mech. Solids (2015) doi:10.1177/1081286515598661 · Zbl 1373.74105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.